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The electroweak theory (the Weinberg-Salam theory) is reviewed em­
phasizing its aspect of a renormalizable gauge field theory with spontaneous 
symmetry breaking. The on-shell renormalization procedure is developed where 
all the renormalization constants are fixed on the mass shell of gauge bosons, 
fermions and Higgs bosons. It is applied to the calculation of radiative cor­
rections to leptonic processes v,e~v,e, v,e~v.e, v,e~pv. and p~ev.v,. The 
experimental significance of the radiative corrections and the effect of the 
corrections to the values of physical masses of W± and Z are discussed. 
The relation among different renormalization procedures is clarified. 
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Electroweak Theory 
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For the results of electroweak radiative corrections of O(a) to leptonic 
processes, refer to 
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Chapter 1 

Introduction 

§ l. l Gauge unification of particle interactions 

Classical electrodynamics was brought to completion m the form of the 
Maxwell equation where the vector potential appears as a fundamental field. 
As is well-known, the vector potential is regarded as a gauge field according 

to the local gauge invariance of the theory. The covariant quantization of 

the theory was performed consistently by introducing the indefinite metric and 
the theory turned out to be quantum electrodynamics (QED). It is the re­

normalizable gauge field theory where higher order effects in perturbative ex­
pansion for given electrodynamic processes can be systematically calculated. 

[Tati and Tomonaga 48, Fukuda et al. 49, Schwinger 48, 49a, b, Feynman 
48, 49]. Those predictions based on higher order calculations have been 

extensively tested in various accurate experiments. 
The theory of weak interactions originated from Fermi's theory [Fermi 

34] on {3 decays*> and was settled in the effective 4-fermion interactions of 
the V-A type [Feynman and Gell-Mann 58, Sudarshan and Marshak 58]. 

Although it was quite successful in the phenomenological sense, the 4-fermion 
theory was not satisfactory because of its violation of unitarity and of its 
nonrenormalizability which prevents us from dealing with weak higher order 

effects in a convincing way. Theories of weak interactions mediated by massive 
intermediate bose fields instead of the 4-fermion interactions had been proposed 
to attain universality [Lee et al. 49]. In these theories unitarity is recovered. 

This type of the theory is, however, still nonrenormalizable and thus there 

is no improvement of the situation. The improvement could only be possible 
if the weak vector fields would be regarded as non-Abelian gauge fields 
[Yang and Mills 54] just like the electromagnetic field as a gauge field in 
quantum electrodynamics. While the weak vector fields must be massive in 
order to reproduce the 4-fermion interaction effectively, gauge fields are requir­
ed to be massless for the gauge invariance. 

An attempt to solve this discrepancy and to unify the electromagnetic 

and weak interactions was proposed by Glashow in the use of SU(2) X U(l) 
gauge symmetry [Glashow 61]. A possible mechanism of giving a mass to 
the gauge field was found by Higgs in the case that the gauge symmetry is 

*> It is interesting to note that Yukawa, as early as Fermi, applied his idea of intermediate 
bosons to {3 decays [Yukawa 35]. This is the first attempt to unify strong and weak 
interactions. 
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Chap. 1 Introduction 5 

spontaneously broken [Higgs 64, 66]. This is known as the Higgs mechanism. 
A realistic model of weak interactions was proposed by Weinberg and Salam 
where the Higgs mechanism was applied to a non-Abelian gauge field theory 
[Weinberg 67, Salam 68]. It should be noted here that to construct the 
realistic model of weak interactions it was necessary to unify the theories of 
weak and electromagnetic interactions in the non-Abelian gauge field theory. 
According to the proof by 't Hooft such a non-Abelian gauge field theory 
with spontaneous breakdown of gauge symmetries is renormalizable ['t Hooft 
71b]. Experimental evidence for the model proposed by Weinberg and Salam 
has been accumulated and the model is widely believed to be the real theory 
of weak and electromagnetic interactions. The theory of this type is often 
called the electroweak theory. 

The strong interaction of hadrons is supposed to originate from the inter­
action of their constituents, quarks, which is described by the non-Abelian 
gauge field theory based on the local color gauge symmetry of quarks [Fritzsch 
et al. 73]. This gauge theory, called quantum chromodynamics (QCD) has 
many desirable aspects in nonperturbative regime (as a review, see, e.g. [Mar­
ciano and Pagels 78]) and has also received strong phenomenological support 
particularly in short distance processes (for a recent review, see, e.g. [Buras 
81]). 

Just as QED and the weak interaction theory were unified to be the 
electroweak theory, the electroweak theory and QCD are expected to be 
unified as a gauge theory which is called the grand unified theory (GUT) 
(one of the models is due to [Georgi and Glashow 74]. For recent reviews, 
see, e.g. [Langacker 81] and [Konuma and Maskawa 81]). Experimental 
tests of GUT are currently under preparation and information on the validity 
of GUT will be obtained in the near future. It is, however, also important to 
continue more phenomenological tests on the electroweak theory and QCD 
in order to put on a solid basis for these theories which are the basic building 
blocks of GUT. 

In the present review article we try to elucidate the structure of the 
electroweak theory as a gauge field theory with the intention of testing ex­
perimentally its field theoretical aspect. 

§ l. 2 Development of the W einberg-Salam theory 

There could be a variety of models for the electroweak theory con­
cerning its detailed structure. The difference of models is typically reflected 
by the neutral current structure of the theory. According to the experimental 
analyses of the neutral current structure in recent years, the original model 
by Weinberg and Salam was finally chosen as a unique model of the electro­
weak theory. 

The Weinberg-Salam model was originally formulated for leptons only. 
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6 K-I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta 

At that time the charm quark had not yet been discovered while two kinds 
of neutrinos were known, and the lepton-quark correspondence was not com­
plete.*> The introduction of a constituent with charm quantum number resolved 

this tantalizing situation [Maki 64a, b, Hara 64, Bjorken and Glashow 64]. In 
order to incorporate quarks with the Weinberg-Salam model, it is also necessary 

to fulfill the lepton-quark correspondence. The incorporation of the charm 
quark was crucial to explain the absence of the strangeness-changing neutral 
current owing to the GIM mechanism [Glashow et al. 70]. It is now possible 
to accommodate in the Weinberg-Salam model any number of generations of 
leptons and quarks in the sequential form. We assign the left-handed (right­
handed) quarks and leptons to the doublets (singlets) of the group SU(2) 
X U(l). In the present paper we confine ourselves to the case of 3 generations. 

(:•)L (~t (:·t 
VeR VpR v.R 

eR fJ.R rR 

(;,)L (;,t (;t 
UR CR tR 

dR SR bR 

Here suffixes R and L refer to the right- and left-handed projections (1 ± r5) /2 
respectively and d' and s' represent the Cabibbo-mixed states [Cabibbo 63]. 
We neglect the Kobayashi-Maskawa mixing [Kobayashi and Maskawa 73] 
throughout the present paper. Since, in general, neutrinos may acquire masses, 

we have included v,R, vllR and v.R in the above tabulation. Though t-quark 
has not yet been observed, it has also been included. 

The group SU(2) X U(l) reflects the symmetry of electroweak interac­
tions and may be regarded as a local gauge group. The requirement of the 
SU(2) X U(l) local gauge invariance leads to the existence of the gauge fields 
which turn out to be the photon A and the weak bosons W± and Z. To 

make the weak bosons massive we utilize the Higgs mechanism in connection 
with the spontaneous breakdown of the SU(2) X U(l) symmetry. The most 
economical way of doing this is to introduce a doublet of the Higgs scalar 
field, W, the vacuum expectation value of which is given by 

<<»>= ( ~ )· 
*> The lepton-quark correspondence originated from the lepton-hadron correspondence 

[Gamba et al. 59, Katayama et al. 62, Maki et al. 62]. 
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Chap. 1 Introduction 7 

By this choice of the Higgs field, the SU(2) X U(l) symmetry is broken down 

to the U(l) symmetry leaving only the electric charge conserved. 

The model described above is, in a sense, minimal as a model of electro­

weak interactions. One may, of course, consider a model with more parameters. 

As mentioned before, it is possible to choose a proper model by examining 

the neutral current structure of the models. By careful analyses of neutrino 

neutral-current processes (for a review of experimental data, see, e.g. [Hioki 

78, Baltay 79]), it was concluded that the W einberg-Salam model is the 

unique solution in the quark sector as far as the first generation of quarks 

is concerned [Sehgal 77, Abbott and Barnett 78a, 78b, Komatsu 78, Hung and 

Sakurai 79]. The experiment on the parity violation in polarized electron­

deuteron scattering [Prescott et al. 78] gave important information on the 

interference of the weak neutral current and electromagnetic current. By the 

analysis of this data the Weinberg-Salam model was uniquely chosen m the 

electron sector [Konuma and Oka 78, Abbott and Barnett 78b]. In Fig. 1.1 

we present experimentally allowed regions for effective coupling constants (Jv 

and gA of the electron neutral current, where (Jv and gA are defined through 

the effective Hamiltonian for neutral current interactions: 

Fig. 1. 1. Experimentally allowed strengths of the neutral current couplings of the electron. 
(1) Area between two ellipses is allowed from data of v.e-?v.e scattering. 
(2) Allowed area from data of v.e-?v_e. 
(3) Area surrounded by three dashed curves is consistent with data of reactor neutrino 

scattering v.e-?v.e. 
(4) Allowed region from polarized electron deuteron scattering ed-?eX. 
(5) Two small regions are consistent with data of e+e--?e+e·, /.l+/.l-, t'+t'- at PETRA. 

The black region is the solution consistent with all the above experimental data and 
includes the values in the Weinberg-Salam theory with sin'8w:=:::0.25. 
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8 K-1. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta 

where V and e represent the neutrino and electron fields respectively. For 
the Weinberg-Salam model 

Experimental constraints set by Vpe-4Vpe, Vpe-4VIle, v.e-4V,e and polarized ed 
-4eX data single out the W einberg-Salam model with sin28w=0.25. Recent 
experimental analyses at DESY in e+ e- -4e+ e-, 11+ tF, -r+r- and e+ e- -4hadrons 

have added new information to the validity of the W einberg-Salam theory in 
the energy region which covers 3 generations of leptons [Davier 82]. 

These tests of the model, however, have been restricted to the tree level, 

i.e., the field-theoretical aspect of the model has never been tested. In order 

for the W einberg-Salam model to be established as electroweak theory, there 
are still more hurdles to be cleared. The following is a list of some of further 
important experimental tests of the W einberg-Salam theory. 
1) Aspect of the model···e.g., Observation of W± and Z. 
2) Aspect of the renormalizable field theory·· -e.g., Experimental check of 

radiative corrections. 

3) Aspect of the spontaneous breakdown of the SU(2) X U(l) gauge sym-
metry···e.g., Observation of the Higgs boson. 

In this review article we concentrate our attention on the second aspect of the 
above list. For this purpose we develop a convenient renormalization proce­
dure and apply it to some practical calculations of radiative corrections to 
leptonic processes. 

§ 1. 3 Field-theoretical aspect of the W einberg-Salam theory 

Electroweak theory is a non-Abelian gauge field theory based on the local 

SU(2) X U(l) gauge symmetry. The difficulty lies in the fact that the quanti­
zation and renormalization procedures in non-Abelian gauge field theories are 
not straightforward generalization of those in Abelian gauge field theories 
like QED. 

It was found by Feynman in 1962 that, in the covariant quantization of 
non-Abelian gauge field theories, one needs ghost fields even at one-loop level 

by the requirement of unitarity and gauge invariance [Feynman 63]. This can 
be easily seen by calculating the one-loop self-energy part of gauge bosons 
corresponding to the Feynman diagrams illustrated in Fig. 1. 2. In fact it does 
not satisfy the gauge invariance and its discontinuity does not fulfill the uni-

+ 
Fig.l. 2. The Feynman diagram for the 

one-loop self-energy part of 
the gauge boson. 
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Chap. 1 Introduction 9 

tarity requirement. This difficulty may be eliminated by introducing a con­
tribution of a ghost field which obeys an anticommutation relation although 
it is a scalar field. Feynman's idea was generalized to multi-loops by de Witt, 
but the origin of the ghost was still mysterious [de Witt 67]. In 1967 Faddeev 
and Popov gave a beautiful formulation for the quantization of non-Abelian 

gauge field theories based on the path-integral method [Faddeev and Popov 
67]. According to their formulation the appearance of the ghost (Faddeev­
Popov ghost) in the covariant quantization of non-Abelian gauge field theories 
is now clearly understood and the covariant Feynman rules are systematically 
written down. 

In order to study the structure of non-Abelian gauge field theories, how­
ever, it is more convenient and more powerful to use the canonical operator 
formalism than the path integral formalism. In 1978 Kugo and Ojima suc­
ceeded in completing the manifestly covariant quantization in the canonical 

operator formalism, which guarantees the unitary S-matrix, based on the 
Becchi-Rouet-Stora (BRS) invariance [Kugo and Ojima 78, 79, Becchi et al. 
75, 76]. Their formulation may be regarded as a natural generalization of 
the Nakanishi-Lautrap formalism in QED [Nakanishi 66, Lautrap 67]. In 

the present review article we follow the Kugo-Ojima formulation to quantize 
electroweak theory. 

Once the problem of quantization is settled, the perturbative calculation 
can be systematically performed. In calculating higher order effects, however, 

one encounters ultraviolet divergences in the loop integrations and the re­
normalization procedure is required to be developed. It was found by 't Hooft 
and Lee and Zin-Justin that non-Abelian gauge field theories are renormali­

zable even with the spontaneous symmetry breaking ['t Hooft 71b, Lee and 
Zin-Justin 72a, b, c]. Although the renormalizability of the electroweak theory 

is obvious according to the works of 't Hooft and Lee and Zin-Justin, it is still 

necessary to formulate the renormalization procedure in order to obtain the 
finite part in divergent amplitudes for a specific electroweak process. There 

have been proposed several renormalization procedures to deal with electro­
weak radiative corrections. None of them, however, are performed entirely 
on the mass shell. We develop, in the present paper, the on-shell renormali­

zation scheme.*> Since there exists some confusion in understanding the pro­

cesses of calculating electroweak radiative corrections on the basis of various 
renormalization schemes, we will discuss the comparison of the schemes pro­
posed so far (Chapter 7). 

One of the main sources of the confusion lies in the complication due to 
the existence of many independent parameters. The free parameters existing 
in the W einberg-Salam theory are g and g' (SU (2) and U (1) gauge coupling 

*> The original idea of the on-shell renormalization scheme was given in [Aoki 79]. See 
also [Aoki and Hioki 79, Aoki et a!. 81, Inoue et a!. 80, Bardin et a!. 82] . 
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10 K-J. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta 

constants respectively), tf and ,{ (parameters in the Higgs potential) and ft 
(the Riggs-fermion Yukawa-coupling constant where i refers to the type of 

fermions). There is another important parameter v, the vacuum expectation 

value of the Higgs field. This parameter v is not an independent parameter 
and should be fixed at the minimum point of the Higgs potential and hence 
is given in terms of the above free parameters. Since this set of independent 
parameters (g, g', tf, ..<, ft) is inconvenient, it is usually transformed to other 
sets which consist of physical parameters. Some examples of the set of 
physical parameters 

(1) 

(2) 

(3) 

are 

e' 

e' 

e' 

sin Ow, 

sin Ow, 

Mz 

g mt, mq,, 

Mw, m;, mq,, 

Mw , m;, mq,, 

where e is the electromagnetic coupling constant, Ow the Weinberg angle, and 

Mw, Mz, mt and mq, are masses of the W- and Z- boson, the fermion of 
type i and the Higgs boson ¢ respectively. These various choices of the set 
of independent parameters are equivalent and related to each other by simple 
relations at the tree level. However, their relations become very com­

plicated once higher order corrections are taken into account. It is this stage 
where the proper choice of the set of independent parameters is important. 

Several authors have adopted set (1) or (2). While Mw and Mz are 
well-defined as pole positions of Green functions, the definition of the para­

meter sinOw is rather obscure except at the tree level where tan8w=g'jg. 
When higher order corrections are taken into account, there is no more unique 
and a priori definition of sin Ow. Hence one must introduce the definition of 
sin Ow by hand. Moreover, unlike physical masses, sin Ow is not directly mea­
surable (see § 3.1). *> For this reason we do not adopt sin Ow as one of the 

independent parameters. In our renormalization scheme we choose set (3) as 
independent parameters where, except for e the exact value of which is known 
in QED experiments, all the parameters are masses which are physical observ­

ables. Since W, Z and Higgs bosons have not been observed, the values of 

Mw, Mz and mq, are still unknown. However, if all these mass parameters 
are fixed, our scheme will be considered to be superior. A detailed explanation 
of our scheme will be given in Chapter 3, where we will set up all the 
renormalization conditions on the mass shell. 

§ 1. 4 Plan of the paper 

This paper reviews the field theoretical structure of electroweak theory, 

*> One may define sinOw such that cosOw=Mw/Mz in terms of physical masses Mw and 
Mz. The scheme with this definition, however, turns out to be equivalent to the on-shell 
scheme. 
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Chap. 1 Introduction 11 

presents the on-shell renormalization scheme and deals with some applications 
of the scheme to higher-order calculations in leptonic processes. 

Chapter 2 contains the review of the general framework in electroweak 
theory. Starting from the gauge principle, we derive the Lagrangian for 

electroweak theory (§ 2.1), to which the Faddeev-Popov ghost term is added 

in connection with the covariant quantization (§ 2.2) and the Higgs field term 
in connection with the spontaneous symmetry breakdown (§ 2. 3). The 
generalized Ward-Takahashi identities are derived (§ 2.4) and the renormali­
zability of the theory governed by the above Lagrangian is then proved (§ 2.5) 
by the full use of these identities. 

Chapter 3 consists of the description of the on-shell renormalization scheme 
which we believe is the most convenient and useful. After an introductory 
remark on renormalization schemes in general (§ 3.1), the on-shell renormali­

zation scheme is introduced and on-shell renormalization conditions are settled 

(§ 3.2). A further detailed discussion on two-point functions is given in § 3.3. 
The universality of the electric charge, the on-shell coupling constant of the 
photon, is then proved carefully (§ 3.4). 

Chapter 4 presents a collection of useful tools to perform higher order 
calculations. The full Lagrangian given in § 2.3 is rearranged explicitly in 
terms of physical fields (§ 4,1) and the Feynman rules derived from this 
Lagrangian are tabulated (§ 4.2). All the counter terms necessary to carry 

out the on-shell renormalization are presented in terms of the physical para­
meters (§ 4.3). 

Chapter 5 is devoted to the detailed description of applications of our 
renormalization scheme to the calculation of radiative corrections to leptonic 

processes. We first make a short review on leptonic processes in the Weinberg­
Salam theory (§ 5.1). After the brief explanation of the calculational procedure 

(§ 5.2), the neutral (§ 5.3) and charged (§ 5.4) current processes are taken 
up for the calculation of radiative corrections. 

In Chapter 6 we discuss the numerical results. The values of the W­
and Z-boson masses are discussed on the basis of the results in Chapter 5 

(§ 6.1). The numerical estimates of the total cross sections with one-loop 
corrections are presented (§ 6.2) . 

Chapter 7 deals with discussions and comparison of calculational de­
vices adopted by various groups. All the approaches are in principle equiva­
lent, but have quite different appearances. Hence this chapter may help under­
standing relations among different approaches. The discussion is given in the 
conventional (§ 7.1) and renormalization-group (§ 7.2) approaches separately. 

Chapter 8 is devoted to the concluding remarks. 

Finally we would like to suggest that readers who are mainly interested 
in practical calculations in higher orders may skip Chapters 2 and 3 and start 
from Chapter 4. It is recommended that serious readers who wish to see 
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12 K-I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta 

the detail of the on-shell renormalization scheme read through Chapters 2 
and 3. [See the Referral Guide of This Paper placed after contents.] 

Notations 

We follow the notations of the text book by Bjorken and Drell in most 
cases [Bjorken and Drell 65]. Thus the metric is g"" = (1, -1, -1, -1) and 
T5 is defined by r 5 = iT0T1T2T8• The inner product of a r matrix with vector p 
is denoted by Feynman's slash: r"P11=p. 

See § 4. 2 for a slight difference between our notations and those by 
Bjorken and Drell. 
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Chapter 2 

Structure of Electroweak Theory 

In this chapter we shall briefly describe the formal structure of electro­
weak theory. Starting with the gauge principle, we shall derive the classical 
Lagrangian for electroweak theory and perform quantization in covariant gauge 
following the canonical operator formalism. We shall then introduce the Higgs 
mechanism to give masses to gauge bosons and fermions. The renormalizability 
of the theory will be shown by the use of generalized Ward-Takahashi 
identities. 

§ 2. 1 Gauge principle 

It has been well-known that the weak interaction is described by the 
effective current-current Lagrangian of the following form, 

_[ - GF . t •p 

w- ,.j2J"J ' (2·1) 

where j, is the weak charged current. Here, for simplicity, we shall consider 
only one generation of leptons and quarks, and further restrict our argument 
to leptons only. A full generalization to include quarks and multi-generations 
is straightforward and will be given in § 2.3. In the present case, the current 
takes the form 

(2·2) 

with c/J. and c/J. the fields of the electron and the electron-neutrino respectively. 
On the other hand, the electromagnetic interaction of charged leptons is ex­
pressed by the Lagrangian 

where A" IS the photon field and jp,em Is the electromagnetic current with 
the form 

Thus the weak and electromagnetic interactions are describable in terms of 
the currents of leptons, j" and j"em' 

Rearranging the structure of j" and j"em' one easily finds that they can 
be reexpressed in terms of currents with definite SU(2) X U(l) transformation 
properties. In fact, we have 
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14 K-I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta 

where J/ and J/ (n = 1, 2, 3) are given by 

J o=;;; r 1+r5 "· +l_;;;r 1-r5 ,,, 
" 'f' e " 2 'f'e 2 'f' " 2 'f' ' 

(2·5) 

(2·6) 

(2·7) 

with c/J= (cp,, c/J.) and -rn/2 the SU(2) generator in the fundamental represen­
tation. The currents J11° and J/ may be identified with those corresponding 
to the U(1) and SU(2) symmetries respectively. Under the SU(2) symmetry 
the left-handed (right-handed) fermion (1-r5) cfJ/2 ( (1 + T5) c/J/2) can be clas­
sified in a doublet (singlet) representation. This observation suggests that 
the weak and electromagnetic interactions maintain the SU(2) X U(1) symmetry. 
In the following we shall take the SU(2) X U(1) symmetry as a basis of our 
argument and shall determine the Lagrangian of electroweak theory by re­
garding the SU(2) X U(1) symmetry as a local gauge symmetry. 

The algebra of the SU(2) X U(1) symmetry is generated by yn and Y 
(generators of the SU(2) X U(1) group) with the following commutation 
relations, 

(2·8) 

(2·9) 

where e1mn is the antisymmetric tensor (e128 = 1 and e218 = -1, etc.) and the 
repeated index should be summed over. For later convenience we introduce 
indices a, b, c,··· which run over 0, 1, 2 and 3, and define 

T 0=Y/2. (2 ·10) 

Equations (2 · 8) and (2 · 9) now read 

(2·11) 

where _Fbc = 0, and pwc = eabc for {a, b, c} = {1, 2, 3}. It should be noted that 
the eigenvalue of Y in each representation of SU(2) X U(1) is determined 
so that the relation Q= T 8 + Y/2 holds where Q is the charge operator. 

The leptons e and v. constitute a singlet and doublet in SU(2) X U(1) 
as has already been mentioned in § 1.2. They form the following sets (the 
neutrino is assumed to be left-handed) , 

(2·12) 
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Chap. 2 Structure of Electroweak Theory 15 

where suffixes R and L refer to the right- and left-handed components of field 

cfJ respectively: 

,,, = 1 ± r 5 ,,, 
'f'R,L 2 I"· (2·13) 

We now introduce the local gauge transformation based on the SU (2) 

X U(1) symmetry. The transformation property of the field cfJ reads 

where the ()a's are gauge-transformation parameters and 

with 

r;acp(x) =igayacp(x) (no summation on a) 

ga = { g 
g' 

for a= 1, 2, 3 , 

for a=O. 

(2·14) 

(2·15) 

(2 ·16) 

Here g and g' are SU(2) and U(1) gauge coupling constants respectively. 

Applying the gauge principle we may derive the classical Lagrangian in a 

standard manner (see, e.g. [Abers and Lee 73]). The Lagrangian acquires 

the following expression, 

where 

.£=.£G+.£F, 

(' - 1 Fa F P• 
..LG- --4 p.v a , 

F~.=fJ" W.a-fJ.W/+gafabcW/W.C' 

(no summation on a) 

DLp=fJP-igaTaW/' 

DR"= f)"- ig'T0 W"0 

(2 ·17) 

(2 ·18) 

(2·19) 

(2·20) 

(2·21) 

(2 ·22) 

with W/ the SU(2) X U(1) gauge field. Note that T 0 = -1/2 for L 

(-1 for R). The transformation rule of W/1-a is given by 

(2. 23) 

Obviously W/ for a= 1, 2, 3 belongs to the adjoint representation of SU (2). 

The gauge fields and matter fields described by the Lagrangian (2 ·17) 

are all massless while, in the real world, almost all fermions are massive and 

the gauge bosons mediat-ing weak interaction are required to be very heavy. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article-abstract/doi/10.1143/PTPS.73.1/1848359 by guest on 06 January 2019



16 K-I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta 

Thus the Lagrangian (2 -17) which has been obtained by the simple appli­
cation of the gauge principle is unrealistic in the present form. Before going 

into this problem, we shall consider the problem of quantization of the theory 
in § 2.2. 

§ 2. 2 Quantization 

We would like to perform the covariant quantization of the theory specified 

by the Lagrangian (2 -17) . For this purpose we define the variable canoni­
cally conjugate to the field W/, 

II a = fJ _[ = - F~" . " - awa" 
According to this definition, the 0-th component of II/ vanishes: II0a = 0. 
This means that the propagator of gauge fields is singular for the system 
governed by the local-gauge invariant Lagrangian. Under this circumstance 
it is impossible to make the covariant quantization consistently. 

The singularity disappears if we do not respect the local gauge invariance 
by adding a gauge fixing term, and we can perform the covariant canonical 
quantization. At this stage we need to introduce the Faddeev-Popov ghost 

[Faddeev and Popov 67], in particular, in the covariant quantization of non­
Abelian gauge field theory. In this scheme, however, some of the states 
corresponding to gauge fields become unphysical, i.e., acquire negative norm. 
Accordingly we have to restrict the states by subsidiary conditions. 

Here we first explain the quantization based on the path integral formula­

tion (see, e.g. [Abers and Lee 73, Faddeev and Slavnov 80]) to show how 

the Faddeev-Popov ghost comes into play. We then perform the covariant 
canonical quantization in the operator formulation [Kugo and Ojima 78]. 

To the Lagrangian (2 -17) we add the covariant gauge fixing term, 

where a is the so-called gauge parameter. With this gauge fixing term the 
theory is now nonsingular and hence we can write down the Feynman rule 
for the theory. One may then calculate Feynman diagrams which involve 
gauge-field loops. For example, the proper one-loop bare self-energy part 
(Fig. 1.2) of the field W/ can be easily calculated using the dimensional 
regularization to regulate the ultraviolet divergence. It reads in the Feynman 
gauge (a=1), 

II~e (q) =((Jab- tJaotJ bo) 1:~2 [ {~ (! -r -ln 4~:: ) + 598} lfl,.. 

- {131 (! -r -ln 4~:: ) + ~;} q,.q.]. (2-25) 
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Chap. 2 Structure of Electroweak Theory 17 

where /}.2 is the regularization mass scale squared, e = ( 4- D) /2 with D the 

space-time dimensions and r is the Euler constant. In Eq. (2 · 25) only 

gauge-field loop has been taken into account. Apparently we see that Eq. 

(2 · 25) violates gauge in variance, i.e., q"II:~ (q) =FO. This situation does not 

change even if we take account of the contribution of fermion loops, since 

it is by itself gauge invariant. One can also show that it does not satisfy 

unitarity in each order of perturbation theory. These inconsistencies may 

be traced back to the fact that polarizations of gauge fields are not necessarily 

physical in the covariant gauge. 'To recover gauge invariance and unitarity, 

Feynman in 1963 devised a procedure in which one adds a contribution to 

II:~ from a hypothetical scalar particle which is anticommuting and belongs 

to the adjoint representation of SU(2) [Feynman 63]. In fact, if one takes 

into account the contribution of the Feynman diagram in Fig. 2. 1 with a 

proper coupling type and an overall negative sign due to the assumed anti­

commutation property, one finds 

which is obviously gauge-invariant. This procedure can also be applied to 

the Feynman amplitude with many external lines and may be extended to the 

case of multiloop amplitudes [de Witt 67]. 

..... ·>-· .... 

~ :.........-. 
\ I 
···-c:···· 

Fig. 2. 1. The contribution of the hypothetical 
scalar particle to the self-energy part 

of the gauge boson. 

A clear-cut formulation to justify this heuristic procedure was given by 

Faddeev and Popov using the Feynman path-integral method [Faddeev and 

Popov 67]. Let us consider a transition amplitude defined by the path integral, 

(2·27) 

where the qi's represent all the involved fields and index i expresses Lorentz 

and group indices altogether. We set the gauge fixing condition, 

(2·28) 

where pia is an operation on qi which may or may not be a differentiation and 

fa is a given function. For example, if pia= 8" and fa= 0, Eq. (2 · 28) reads 

a.uW/=0. With this gauge fixing the path integral (2·27) must be performed 

on the restricted paths which satisfy Eq. (2 · 28). This constraint may be 

explicitly taken into account by using the functional .d[1j>l] which is defined 

by 
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18 K-I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta 

(2-29) 

where g)g is an invariant measure of group element gin local SU(2) X U(1) 

which has property g) (gg') = g) (g) and ¢/ is a transform of ¢ 1 under the 

group element g. Apparently from Eq.(2-29) we see that Ll[¢£] is invariant 

under the transformation g: 

Using Eqs.(2-29) and (2·30), Eq.(2-27) 1s rewritten as 

(2· 31) 

where we have taken into account the gauge in variance of g)¢1 and ..[. 

Since the integrand in Eq. (2 · 31) does not depend on g, one may factor out 

f g)g which is an infinite constant. By this factorization one obtains the well­

defined transition amplitude Z. Equation (2 · 31) shows that the application 

of the gauge fixing condition enforces the measure of the path integral to be 

deformed resulting in an appearance of Ll[¢1]. 

The presence of Ll [¢1] in Eq. (2- 31) is an obstacle to derive ordinary 

Feynman rules. In order to circumvent this difficulty, we try to exponentiate 

Ll[¢1] and redefine the Lagrangian. For this purpose we derive an explicit 

expression of Ll [¢1] in Eq. (2- 31). Noting that ¢u1=¢1 + (}"8"¢1 and fDg= ff)() 

for g=1, we find, under the condition F 1b¢t = fb, 

Ll[¢~] = [ s {])88(8"(F/r/Ji)8"- P) rl 
= det (8"(F/¢1)). (2· 32) 

Hence in Eq. (2· 31) we may effectively replace Ll[¢1] by the determinant in 

Eq. (2 · 32). We here introduce auxiliary fields c" and c" which are scalar 

fields following anticommutation rules and belonging to the adjoint representa­

tion. The field possesses the property of the Grassmann number. With 

the help of these fields e and c, we can rewrite det (()" (F1b¢1)) as follows, 

(2· 33) 

Note here that the anticommutation property of the fields c" and c" is necessary 

to obtain det (()" (F/¢£)) in Eq. (2 · 33) instead of 1/det (()" (F/¢£)). The fields 

c" and c" are called Faddeev-Popov ghosts (FP ghosts) [Faddeev and Popov 

67]. The delta function () (Fi"cj>l- f") in Eq.(2 · 31) can also be exponentiated 

if we average it over the parameter f" with the weight exp[ -i(f") 2/2a]: 
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Chap. 2 Structure of Electroweak Theory 19 

S {f) f tJ (FNi- f") exp (- i S d4x (f") 2/2a) 

= s fl)B exp[i s d4x(B"Ft¢'+ ~ B"B,.)]. (2· 34) 

where we have introduced an auxiliary field B" to linearize the gauge term. 
We finally find 

(2. 35) 

where the modified Lagrangian ..[ 1 reads 

_[ 1 = _[ + _[ GF + _[ FP , (2. 36) 

(2· 36a) 

(2. 36b) 

In the covariant global symmetric gauge, 

(2· 37) 

where 

(2·37a) 

Performing the integration by parts, we obtain 

(2. 38) 

The Lagrangian _f 1 in Eq. (2 · 36) together with Eq. (2 · 38) is the basic 

Lagrangian in the covariant gauge from which the Feynman rules follow. 
The above procedure of the quantization can be recapitulated by an 

operator formulation. As was observed before, in the course of quantization 
one was forced to introduce the gauge fixing term and then the local gauge 

invariance was violated. At the same time, however, the Faddeev-Popov ghost 
term was necessitated. The final Lagrangian thus obtained has a new global 
symmetry under the transformation including Faddeev-Popov ghost fields. 
This was found by Becchi, Rouet and Stora and is called the BRS transfor­
mation [Becchi et al. 75, 76]. 

We can now reverse the argument: We start with the BRS transformation 
and determine _[ FP so that the total Lagrangian is invariant under the BRS 

transformation. The BRS transformation is defined by the following set of 
infinitesimal transformations, 

tJBRs¢(x) =i)..g"c"(x)T"¢(x), 
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20 K-I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta 

Q'BRsW,. a(x) = J..D/bcb(x), 

O'BRsca(x) =J..Ba(x), 

where A is a parameter independent of x which anticommutes with c (x), c (x) 
and </J (x). Note that the transformations of <jJ (x) and W/ (x) are obtained 
from their local gauge transformations (2 ·14) and (2. 23) by replacing ea (x) 

by Aca(x). We require that the total Lagrangian ..f'=_f+_fGF+_fFP be 
invariant under the BRS transformation (2 · 39) leaving _[ FP unknown. Ob­
viously _[ ( = _[ G +_[F) is invariant under (2 · 39) as it has originally the 

local gauge mvanance. On the other hand, _[ GF transforms under (2 · 39) 
such that 

(2·40) 

To maintain O'BRS _[' = 0, we must compensate Eq. (2· 40) by (JBRS _[ FP· By 

taking the form (2 · 36b) as _[ FP• we find 

(2. 41) 

which vanishes. In fact, by applying Jacobi's identity for operator 0, 

we can show that 

Q'BRS (Q'b (Ft¢£) cb) = _). .f!_ fabcac (F£a¢£) ca cb 
2 

+O'b(Ft¢£) ( -J..; )pcttcccd=O. 

(2·42) 

Thus the Lagrangian _[' with the form (2 · 36) is the one which satisfies our 
requirement. 

Following the usual procedure through the Lagrangian _[', we can de­
fine canonically conjugate momenta and set up equal-time canonical commuta­

tion relations. For the FP ghost fields anticommutation relations are assumed 
and the Fermi st&tistics is adopted. According to the Noether theorem, there 
exists a conserved current J11BRS as _[' is invariant under the BRS transfor­

mation. The charge QB defined by 

(2·43) 
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Chap. 2 Structure of Electroweak Theory 21 

generates the BRS transformation (2 · 39) . For the Lagrangian ..[' in the 
covariant global symmetric gauge (2 · 37), Q5 takes the form 

(2·44) 

A remarkable property of the BRS charge Q5 is the nilpotency 

(2·45) 

This property may be checked directly by using Eq. (2 · 44) and suggests that 
applying the BRS transformation twice, one gets the vanishing result: 

(2· 46) 

The proof of &BRS ..[' = 0 in Eq. (2 · 41) is in fact an example of this property. 

The physical state [phys) in this formalism is the state satisfying 

(2·47) 

Using the nilpotency of Q5 , one can show that the space spanned by [phys) 
has the positive semidefinite norm [Kugo and Ojima 78, 79]. According to 

this fact, the unitarity of the physical S-matrix, the S-matrix projected on the 
physical space, is guaranteed. Thus a consistent quantization of the theory 
is maintained in the covariant operator formalism. 

It is quite important to note that the FP ghosts ca and ca and the auxi­

liary field Ba (the scalar component of W/) are combined with the longitudinal 

component WLa of W/ and only the combination of them with zero norm can 
appear in the physical space. Hence ca, ca, Ba and wLa effectively decouple 

from the physical states. According to this formalism, we can also make a 
lucid explanation of the Higgs mechanism to be described in § 2. 3. In this 
case, four fields ca, c'', Ba and xa (Nambu-Goldstone mode) are combined to 

disappear from the physical space and three remaining components of the 
gauge field represent a massive spin-1 particle [Nambu and Jona-Lasinio 61, 

Goldstone 61]. The mechanism in which four unphysical components of fields 
may appear in the physical space only as a combination of zero-norm states 

is called the quartet mechanism. One may find all possible asymptotic states 
by constructing the representation of the algebra of Q5 and Q. (conserved 
charge of the ghost number). In the gauge theory there appear only two 
kinds of particles: the physical particles (singlet) and the quartets which are 

unobservable [Nakanishi 79]. 

§ 2. 3 Higgs mechanism 

As stressed at the end of § 2. 1, gauge fields cannot acquire masses in a 
gauge invariant (or, strictly speaking, BRS invariant) Lagrangian. Also fermion 
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mass terms are not included in the Lagrangian (2- 36), because rpu/JR 1s a 

doublet representation of SU(2) and gauge non-invariant. To make the theory 

realistic we need important ideas in quantum field theory, i.e., the spontaneous 

symmetry breakdown and the Higgs mechanism. 

The idea of spontaneous symmetry breakdown was introduced in elementary 

particle physics first by Nambu and ]ona-Lasinio in connection with the chiral 

symmetry [Nambu and Jona-Lasinio 61]. Consider a continuous symmetry of 

Lagrangian _[. According to the usual Noether theorem, there exists a 

conserved charge Q which generates the symmetry transformation, 

[Q, ¢] =ia¢, (2. 48) 

and commutes with the Hamiltonian: 

[Q, H] =0. (2· 49) 

In the case of quantum mechanics where the degrees of freedom are finite, the 

vacuum (the minimum energy state) is unique and is a simultaneous eigenstate 

of H and Q. On the contrary, in quantum field theory with infinite degrees 

of freedom, it is possible to have degenerate vacuum states since transitions 

between these vacuum states are possible only by an infinite number of opera­

tions. Here all the states are constructed on one vacuum which is no longer 

an eigenstate of the charge Q :*> 

QJO)=i=O. (2. 50) 

In other words, the symmetry of the Lagrangian is realized as the degeneration 

of vacuums and it is not manifest in the real world constructed on one vacuum. 

This is the spontaneous symmetry breakdown. The remnant of the symmetry 

is, however, observed through the scalar mode called the Nambu-Goldstone 

(NG) particle which, roughly speaking, corresponds to the state (2 ·50). 

Taking account of the commutativity (2 · 49), we find that this mode is a 

massless excitation. 

In order to describe spontaneous symmetry breakdown, it is most con­

venient to introduce scalar fields which transform as in Eq. (2 · 48). We 

assume that the vacuum expectation value of iJ¢ does not vanish: 

(2. 51) 

which implies Eq. (2 ·50) and hence spontaneous symmetry breakdown. To 

have the non-vanishing vacuum expectation value, we may add to _[ a potential 

term of iJ¢ which assures the stability of this vacuum. We may regard this 

scalar as an elementary field or a tool of effective expression of the spontaneous 

*> Strictly speaking, the charge Q is ill-defined in this case, but, for simplicity, we use Q in 
the present argument. 
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Chap. 2 Structure of Electroweak Theory 23 

symmetry breakdown. In the Hilbert space constructed on this vacuum, it 

is convenient to expand o¢ around its vacuum expectation value and separate 

it into classical and quantum-fluctuation parts. Thus we obtain the effective 

Lagrangian on this vacuum. 

In the case that the symmetry is a local symmetry, that is, gauge symmetry, 

the Nambu-Goldstone mode is absorbed into the gauge boson as its longitudinal 

component and consequently the gauge boson turns out to be massive. This 

is called the Higgs mechanism [Higgs 64, 66]. The above phenomenon is 

now explained in the following. The gauge invariant kinetic term of scalar 

¢ which is called the Higgs scalar takes the form, 

(2. 52) 

where Ta is the generator in the representation of ¢. We suppose that the 

symmetry generated by charge Qa is spontaneously broken: 

QaJO)=I=O. (2 ·53) 

The above equation is represented m terms of scalar ¢ such that 

<o"-¢) = iT"-(¢)=1=0. (2·54) 

The gauge boson A/ corresponding to Q"- has, on this vacuum, the mass 

matrix generated from (2·52): 

(2·55) 

(2 ·56) 

The mechanism of the absorption of the Nambu-Goldstone particle (correspond­

ing to the field o¢) is understood in a covariant gauge as the fact that the 

NG mode becomes a member of an unphysical quartet. 

Fermions can also have masses through spontaneous symmetry breakdown. 

If scalar ¢ interacts with fermions in a gauge invariant way: 

(2. 57) 

the following mass terms emerge, 

_[mass= :E ?J¢(¢) • (2·58) 

Now let us discuss the W einberg-:_Salam model. A common expectation 

based on the phenomenology is that the weak interaction is mediated by 

massive gauge bosons, while the electromagnetic interaction is described by 

the photon which is a massless gauge field. Thus the SU(2) X U(l) sym 

metry of the Lagrangian (2 · 36) must be broken spontaneously in the 

following manner, 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article-abstract/doi/10.1143/PTPS.73.1/1848359 by guest on 06 January 2019



24 K-I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta 

SU(2) X U(1)~U(1)EM. 

The symmetry breaking of this pattern is made possible by introducing an 
adequate Higgs scalar which develops a vacuum expectation value as follows: 

Ta(¢)=f=O, (a=O, 1, 2, 3) 

Q(¢)=0' 

where Q Is the electromagnetic charge generator defined by 

Q=Ta+To. 

(2·59) 

(2. 60) 

On this vacuum only one gauge boson which couples to Q remains massless 
and others acquire masses. 

In order to make fermions massive, it is necessary to introduce SU(2) 
doublet Higgs fields, because the f/iLcfJR term belongs to the doublet represen­
tation and Yukawa interactions f/iu/JR¢ must be gauge invariant. 

Taking account of the above argument, we introduce one SU(2) doublet 
Higgs field for which the eigenvalue of T 0 is 1/2. As potential terms of 
the Higgs field we take the form, 

(2. 61) 

where v is introduced to denote the minimum point of the potential V(¢). 
The vacuum expectation value of f]) satisfies 

(2·62) 

Taking a suitable SU(2) phase convention, we may write m general, 

(2·63) 

This convention corresponds to our representation of charge generator Q, 
(2 · 60), and it is easily verified that the symmetry generated by Q is not 
broken on this vacu urn: 

Q(f])>=(o1 o)( o )-o 
0 vj .)2 - · 

(2·64) 

It should be noted here that a single Higgs doublet field necessarily 
led to the breakdown of SU(2) X U(1) down to U(1). This remaining U(1) 
symmetry is interpreted as that of QED in any convention with an appropriate 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article-abstract/doi/10.1143/PTPS.73.1/1848359 by guest on 06 January 2019



Chap. 2 Structure of Electroweak Theory 25 

redefinition of the charge generator. 

The expression of Higgs @ on this vacuum is given in terms of hermitian 

fields ¢, Xt. X2 and Xs such that 

The Lagrangian for the Higgs field reads 

Through _[ H the gauge boson mass matrix is generated as follows: 

wl W2 Wa Wo 

wl g2 0 0 0 

Mab= 
W2 0 g2 0 0 v2 

X-. 
Wa 0 0 g2 -gg' 8 

Wo 0 0 -gg' g'2 

By diagonalizing the above mass matrix, we obtain 

1 Mw=-gv 
2 ' 

w"± = cw"1 =r=iW"2); .;z, 
Z"= (gW/-g'W/)jVg2+g'2 , 

Ap= (g'W/+gWPO)j./g2+g'2' 

(2 ·65) 

(2·66) 

(2·67) 

(2·68) 

(2·69) 

where Wt< ±, Zt< and At< represent the charged weak bosons, the neutral weak 

boson and the photon respectively. There is no mass term corresponding to 

the photon because it couples to the charge of the remaining symmetry, Q. 
The corresponding NambucGoldstone bosons of Wp ± and Zt< are represented 

by X± ( = (Xt =f iX2) / ~2) and Xs, and they are all massless as easily seen in 

_[ H (2 · 66). These NG bosons form three "quartets" with B fields (scalar 

polarizations of gauge fields) and FP-ghosts and antighosts. These "quartets" 
are all unphysical and can appear only with zero norm in the physical Hil­

bert space. This is guaranteed by the physical state condition (2 · 47) (see 

§§ 2. 2 and 3. 3) . There are also mixing terms of the form a t<X. WP in _[ H• 

In the 't Hooft gauge which we adopt in the following, they are all cancelled 
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away by the corresponding ones coming from the gauge fixing terms (see 

§ 4.1). 
Thus three components of Higgs field (f) are unphysical NG bosons and 

there remains the field ¢ which is the physical Higgs boson. This particle 
has mass, 

m.,=./Zp., (2· 70) 

and 1s observable though it has not yet been found. 
The Yukawa interaction of fermions with Higgs field ¢ is given by 

.£M=- f[JJ)R+h.c., (2·71) 

which generates fermion mass terms, 

.£mass=- f(vj ./2) ·?iei/Je. 

The Yukawa coupling f is a free parameter m our Lagrangian and hence 
the electron mass is an input parameter as in QED. 

We finally obtain the full Lagrangian by adding .£ H (2 · 66) and .£ M 
(2·71) to .£' of Eq. (2·36), 

_[ = _[ G + _[ F + _[ GF + _[ FP + _[ H + _[ M • (2·72) 

This is our basic Lagrangian with which we start our argument on renormali­
zation and application to the calculation of higher order effects in leptonic 
processes. 

Here we study the physical contents of the electroweak interactions 
described oy our Lagrangian in the tree approximation. The term of our 
Lagrangian corresponding to the photon coupling is 

where only the photon-fermion coupling is explicitly shown. In order for this 
interaction to reproduce QED, we identify the electromagnetic coupling constant 
as follows, 

(2·74) 

Next we consider effective four-fermion interactions in the low-energy 
limit mediated by massive gauge bosons. There are two kinds of these effec­

tive four-fermion interactions. One is the charged current interaction mediated 
by the vv± boson: 

reff ( 2j8M 2) · t '" ..Lcharged= g W )p) , (2·75) 

where jP is defined in Eq. (2 · 5). Comparing it with Eq. (2 ·1), we obtain the 
following relation: 
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(2·76) 

which determines the vacuum expectation value, the mass scale of the sym­

metry breakdown. 

The other is the neutral current interaction mediated by the Z boson, 

which is parametrized as follows: 

where 

ji'Nc=?i {T3(l-r5) -2 sin20wQ}¢, 

sin Ow= g' / ..J g2 + g' 2 • 

(2·77) 

(2·78) 

(2·79) 

The angle Ow is the rotation angle between (W8 , W 0 ) and (Z, A) and 

1s called the Weinberg angle. We can express it by the masses of W± and 

Z: 

(2·80) 

This neutral current interaction is very important to determine the electroweak 

theory among many gauge models as mentioned in § 1. 2. We should notice 

that the neutral current is parametrized in a simple way with one unknown 

parameter sin20w, but this simple parametrization is possible only in the case 

of tree approximation (see Chapter 7). 

g' 

g 

1/g• 

Fig. 2. 2. Relations among tree parameters g(SU(2) coupling), g~(U(l) coupling), 
Ow (the Weinberg angle), Mw and Mz (gauge boson masses) and the electro­
magnetic coupling e. 

Since the beginning of § 2. 1, we have restricted ourselves to the case 

of single generation of leptons. The final form of our Lagrangian (2 · 72) 

includes only the electron and electron-neutrino as a fermion family. We are 

now in a position to extend our scheme to the more realistic case of multi­

generations of leptons and quarks. 

As has already been mentioned in § 1. 2, leptons and quarks constitute 
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singlets and doublets in SU (2) X U (1). We represent fermions in the follow­

ing way: 

L - ( 1/Jr) 
I- 1/Jr' L' 

(2. 81) 

where i and I(= 1, 2, 3) are indices representing 3 generations of leptons and 

quarks, cp; and cp1 correspond to the usual up (T8 = + 1/2) and down (T8 

= -1/2) components of leptons and quarks and suffixes R and L represent 

the right-handed and left-handed components of field cp: 

,,, = 1 ± r 5 ,,, 
'f'R,L 2 'f' • (2·82) 

The primes of cp/ and cp/ express the mixing among leptons or quarks, 

(2·83) 

with U the mixing matrix. If the neutrinos are massless, then U = 1 for 

leptons (this corresponds to the case of no mixing in the minimum Higgs 

scheme). For later convemence we introduce a doublet 

L;= ( 1/J/) . 
1/J; L 

(2·84) 

It should be noted that L; and L 1 is related by 

(2· 85) 

The full Lagrangian corresponding to Eq. (2 · 72) can be derived in the 

present general case just in the same way as before. The resulting Lagrangian 

is given by 

_[ = _fG+ _[ F+ _fGF+ _[ FP+..fH+ _fM, (2·86) 

where ..f G• _[ GF• _[ FP and _[ H are the same as the previous ones, i.e., (2 ·18), 

(2 · 36a), (2 · 36b) and (2 · 66) respectively. Only the parts of the Lagrangian 

which include fermions are subject to change, 

(2·87) 

(2·88) 

where f; and fr are the Yukawa coupling constants. Owing to the nonvanish­

ing vacuum expectation value of the Higgs field @, fermions acquire masses 

through the Lagrangian (2 · 88) . The masses of fermions are given in the 

tree approximation by 
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(2·89) 

If we use Eq.(2·76) with the value of GF determined by the experi­
mental data on the muon decay width in the tree approximation, i.e., 

GF = 1.166 X 10-5Ge v-2 ' (2·90) 

we obtain 

v/.J2=174GeV. (2. 91) 

This is a typical mass scale at which the symmetry SU(2) X U(1) breaks down 
to U(1)EM spontaneously. Using Eqs.(2·69), (2·80) and (2·91), we find 

Mw=37.3//sin Ow/, (GeV) 

Mz=74.6//sin 20w/ . (GeV) (2·92) 

Recent experimental data on Vpe and VpN scattering and polarized eN scatter­
ing suggest (assuming the massless neutrino) that 

giving 

Mw-:::::::.77 GeV, 

Mz-:::::.88GeV. 

(2·93) 

(2·94) 

The above arguments on parameters Mw, Mz, GF and sin28w are restricted 
to the tree level. If one takes into account higher order effects and performs 
the necessary renormalization, one finds that those relations like Eqs. (2 · 69) 
(2 · 70), (2 · 7 4), (2 · 76) and (2 · 89) may be modified. A detailed discussion 
of the higher order effects will be given in Chapter 7. 

As we have seen, the experimental information on e, GF and sin2 8w de­
termines all the parameters relevant to all effective four-fermion weak inter­
actions (at the tree level). Thus the gauge theory of electroweak interactions 
proves itself to have higher predictive power. 

§ 2. 4 Ward-Takahashi identities 

The Ward-Takahashi (WT) identities are the relations among Green func­
tions given by symmetries of the theory. Originally the WT identities were 
discovered in QED [Ward 50, Takahashi 57]. In these days generalized 
ones are usually referred to. There are an infinite number of these WT 
identities. In this section we restrict ourselves to derivation of the WT 
identities based on the BRS symmetry which has been stated in the previous 
section. 
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The BRS symmetry plays an essential role to construct the operator 

formalism of gauge theories as a physically consistent quantum field theory 

in a covariant way. For example, consider the unitarity of physical S-matrix. 

It is guaranteed in terms of the quartet mechanism as explained in § 2. 2. This 

mechanism states that unphysical quartet members appear in the physical 

Hilbert space only as zero-norm states. This is equivalent to the existence of 

the appropriate WT identities of Green functions including unphysical particles 

in the final state although the following type of the WT identities is not 
explicitly used in the proof of the quartet mechanism [Kugo and Ojima 78]. 

We derive the WT identities for the effective action given by the BRS 
symmetry. These identities will be used to prove the renormalizability 

(§ 2. 5), the consistency of the renormalization conditions (§ 3. 3) and the 
charge universality (§ 3. 4). 

Let us define the generating functional W[ J, K] of Green functions. 

exp iW[J, K]=(OIT exp iS[J, K] jO), (2·95) 

S[J, K] = J d 4x[J,(x)(f,(x) +K,(x)O'BRS(f,(x)], (2. 96) 

where ($; (x) stand for all field operators*) in the theory and J, (x) and K; (x) 
are c-number source currents with the same commutativity as that of corre­
sponding ($; (x) and O'BRs(f; (x). It should be mentioned that the differen­

tiation with respect to anticommuting r; is understood to be the so-called left­

differentiation, which corresponds to the distribution formula: 

D~(AB) = (D,A)B+ (-1)/A(D,B), 

where ( -1) / is + 1 ( -1) when A is commutative (anticommutative) with r;. 
Differentiation of the above W[J, K] with respect to J; leads to a con­

nected Green function of the field (f: 

(2·97) 

The proof of this equation is given in Appendix G. As a next step, following 

the usual procedure, we define classical fields r/J; in terms of W, 

0' 
c/Jt=-W[J, K]. 

O'J; 
(2·98) 

We define the effective action F[r/l, K] as the Legendre transform of W[J, K] 
with respect to J: 

F[¢, K]=W[J[¢, K], K]- Jt[¢, K]¢1 • (2·99) 

*) In the previous sections, ¢, has been used for field operators. In this section, ¢ 1 stand 
for classical fields and field operators are written as ~~-
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It should be noticed that the source J is a functional of ¢ and K. In fact, 
with the help of r the source J is expressed as 

6r J, = - ( +)- for commuting (anticommuting) field. 
6¢, 

(2·100) 

By successive differentiations with respect to ¢, we obtain one-particle irre­
ducible Green functions: 

(2·101) 

i 6n~[r/J, ~]I (OIT($iJi,'IO)c···(OIT($,nfjin'IO)c 
6¢i," · ·6¢in ~~<~>.K~o 

=(OITffi, ... ffiJO)~roper for n>3. (2·102) 

See Appendix G for the proof of these formulas. In these formulas the order" 
ing of operators should be kept carefully so that the correct sign is obtained 
for anticommuting fields. 

Let us derive the WT identity for the effective action r. We start 
with a trivial relation: 

(01 [ittQ8 , T exp iS[J, K]] 10)=0, (2·103) 

the validity of which is clear if we remember the physical state condition 
(2·47), 

Noticing Eq. (2 · 46), 

we obtain 

(2·104) 

which is expressed in terms of the effective action r as 

(2·105) 

where use has been made of Eq. (2 ·100) and 

6W I 6r 1 
6K, Jfixed = 6K, ~fixed • 

(2·106) 
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Equation (2 ·105) is a goal of our derivation. We write all fields in Eq. 

(2 ·105) explicitly: 

__j_£___. ar + ar. ar + ar. ar + ar. ar 
aW/ aKa~> a1/Jt aK"'• a?J, aK,h (](!), aK., 

+arB+ ar. ar =O 
ac aca aKca ' 

where we have used the following relation: 

ar = aW[J, K] B. 
ax. aJ B 

(2·107) 

(2·108) 

The identity (2 ·107) can be changed to a more useful form. We start 

with the equations of motion for fields jja and e'", 

(2·109) 

(2·110) 

where we have taken the same gauge fixing Lagrangian as that in § 2. 3: 

We rewrite the trivial relations 

(OIT (F,a<$,+aBa) exp iS[J, K] IO) =0, 

(OIT(ab(F,a<$,) eb) exp iS[J, K] 10)=0. 

(2·111) 

(2·112) 

The covariant combination (JilW/ should appear in the terms F,a<$1 because the 

canonical conjugate momentum of W0a, flfV,a=a.l;aW0a, can be obtained from 

the gauge fixing terms, B · F/·<$,. We extract the differential operator out of 

the T-product taking into account the equal time commutator terms between 

W0a and exp i S[J, K]. Noting that only B field, i.e., iJ}V,a in S[J, K] does 

not commute with W0a at equal time, we obtain from Eq. (2 ·111) 

(F,a¢,+aBa)(OIT exp iS[J, K] IO)-(OIT[Wo", exp iS[J, K]]ETciO) 

= (F;"¢,+aBa+J Ba)(OIT exp iS[J, K] IO) 

= (F,a¢,+aBa- ar )<oiT exp iS[J, K] IO) 
aBa 

=0. (2·113) 

Similarly, in Eq. (2 ·112) we notice that in the terms ab (Ft<$i) eb there are 

differential terms of the canonical conjugate momentum of c", (JilfJB", which con-
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tribute as equal time commutator terms. Then we obtain 

F/"(OJT~BRs¢, exp iS[J, K] JO)-(OJT[iJ~ .. , exp iS[J, K]]ETcJO) 

= (Ft OW +Jc .. )(OJT exp iS[J, K] JO) 
oK, 

( ~r ~r) . = F/'-+- (OJTexptS[J,K]JO) oK, oca 

=0. (2·114) 

In this way Eqs.(2·111) and (2·112) are changed to 

(2·115) 

(2·116) 

33 

Although these relations are obtained by using the equations of motion, they 
should be regarded as kinematical relations based on the BRS invariance 
since they are related only with ..£ GF and _f FP· 

It is more convenient to introduce the modified effective action F defined 
by 

(2·117) 

where _f GF is understood as described m terms of classical fields. f is in­
dependent of B: 

(2·118) 

where use has been made of Eq. (2 ·115). Substituting f into Eq. (2 ·116), 
we obtain 

Let us rewrite Eq. (2 ·107) by using f: 

of . of +~f. of + ~!:.. ~f + of. of +of. of 
oW/ oKa" ocp, ~K"' 1 ocp, oK;p1 o({)~, oK.1 oca oK ... 

= _ _!_____ s..£GFd4x• of -of ·B. 
o¢, oK, oc 

(2. 119) 

The right-hand side terms vanish according to Eq. (2 ·119) as follows: 
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The final form of the WT identity is 

iJf _ iJf + iJf _ of + o!_ _ iJf 
iJW: aKa"' orfh oK~i o¢£ oKif>, 

+of. of +of. of =O. 
o(f)t oK11 , oca oKc• 

(2 ·120) 

We differentiate Eq. (2 ·120), for example, with respect to c/1 and set c/1 to 
their vacuum expectation values: c/1 = ( (/;). Each obtained term is a product 
of two one-particle irreducible Green functions: 

(2·121) 

[ 0 

j 

Fig. 2. 3. Graphical representation of a Ward-Takahashi identity (2·121). 

We express Eq. (2 ·121) graphically as in Fig. 2. 3. In this graph the 
black dot at the center represents an operator product (JBRS(/)1 and the right 
half of the diagram stands for the Green function into which the operator 
product (JBRS(/)1 is inserted. The dotted line represents the ghost propagator. 
In the case that iJBRs¢;1 contain linear terms of fields, special attention IS 

required. For gauge fields, for example, the right half of Eq. (2 ·121) is 

<O/ToBRsw,.a .. ·/O)~roper=<OIT (grbcw,.bcc +a,.ca) ···/O)~roper. 

As it stands, the contribution of the second term on the right-hand side is 
not included in Fig. 2. 3. We understand, however, that the diagram in the 
figure represents the whole contribution including that of a,ca for simplicity 
of graphical expression. 

In the following sections, these WT identities, Eqs. (2 ·118) ~ (2 ·120) play 
an important role in proving the renormalizability and charge universality 
and in analyzing consistency of the renormalization conditions. 

§ 2. 5 Renormalizability 

It was proved first by 't Hooft that non-Abelian gauge theories are re-
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normalizable ['t Hooft 71b, c]. Further contributions have clarified the struc­

ture of gauge theories [Lee and Zinn-Justin 72a, b, c, Slavnov 72, Taylor 71, 
t' Hooft and Veltman 72b, Fujikawa et al. 72, for review articles, see Abers 

and Lee 73, Lee 76]. In this section general theory of the renormalizability 
is briefly reviewed and the Ward-Takahashi (WT) identities are derived which 
constitute the essential part of the renormalizability of gauge theories. 

Consider a theory described by a Lagrangian _[ (g0, ¢0) where g0 and ¢0 

generically represent bare coupling constants (including masses) and bare fields 
respectively. The effective action r of the theory defined in § 2. 4 is calculat­
ed by the loop expansion. This r as a functional of g0 and ¢0 includes diver­

gences. The renormalizability of the theory dictates that the effective action 
is a finite functional r R of gR and ¢R, 

(2 ·122) 

where gR and ¢R are defined by an appropriate transformation of g0 and ¢0. 
We introduce renormalization constants Z through the transformation, 

(2·123a) 

(2·123b) 

and assume the loop expansion of the above renormalization constants, 

Z=1+ z<n+z<2>+ ···. (2·124) 

These z<n>•s generate counter terms for the effective action r R in the loop 

expansion. The problem is whether all divergent integrals in r R can be can­
celled out by available counter terms loop by loop. 

In each order of the loop expansion counter terms play a role to subtract 
polynomials in momentum variable from Feynman amplitudes. The resultant 
renormalized Feynman integrals are written in the closed form, where sub­

traction is expressed by Taylor operators such as 

By the use of this closed form for renormalized Feynman integrals, it was strict­
ly proved that if sufficient counter terms are prepared to subtract all super­

ficial divergences, all renormalized Feynman integrals are convergent and finite, 
that is, the theory is renormalizable [Bogoliubov and Parasiuk 57, Hepp 66, 
Zimmermann 69]. Here the superficial degree of divergence of a Feynman 
integral is the degree of divergence obtained from purely dimensional analysis. 

Renormalizability requires first of all that the number of types of super­

ficially divergent graphs is finite, otherwise we must prepare an infinite number 
of (bare) parameters to renormalize the theory. This requirement is satisfied 
only in the case where all coupling constants g0 in _[ have non-negative 
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dimension in the momentum scale [Sakata et al. 51, 52]. Gauge theories satisfy 
the condition: Gauge coupling constants are dimensionless. If we introduce 
scalar fields, the Yukawa couplings with fermions and scalar self couplings 
up to quartic ones are allowed. 

Secondly the consistency should be proved between the degrees of free­
dom of counter terms and independent divergences of amplitudes. In gauge 
theories (with simple Lie group) all gauge coupling constants, for example, 

are g for three-vertices and g2 for four-vertices. This uniqueness of couling 
constants is nothing but the gauge symmetry which gives the theory a very 

strong predictive power. The uniqueness of various (bare) couplings indicates 
that the counter terms are strongly constrained. In order to absorb all diver­

gences in amplitudes into constrained counter terms corresponding relations 
should exist among divergent amplitudes. These relations are given by the 
WT identities derived in § 2. 4. 

In the Weinberg-Salam (WS) theory, for example, the electron mass is 
dynamically related to the Higgs coupling constant with the electron. This 
is one of the above-mentioned constraints. Especially in the gauge theory with 
spontaneous symmetry breakdown, the renormalizability of the theory is non­
trivial if we are involved in the perturbation calculation on the symmetry 
breaking vacuum. 

Let us review briefly the proof of the renormalizability of gauge theories 

by the use of the induction. We define the operation * by 

(2·125) 

where ifJ1. and Kt are relevant fields and corresponding BRS sources respec­
tively. The WT identity (2 ·120) is expressed as follows by this operation, 

(2-126) 

We renormalize ifJt and Ki properly so that the WT identity (2·126) holds 
in the expression with renormalized fields and BRS sources. 

In the loop expansion, we write 

(2-127) 

We also expand the action S with source terms, 

s== ts<i>, 
i~O 

(2·128) 

where s(i) (i>l) are counter terms. We suppose that f'R IS a finite func­
tional to the n-loop order with counter terms to the same order: 
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f'RUl[ t S<'lJ =finite for j<n. (2·129) 
t~o 

The (n + 1) -loop part of the identity (2 ·126) is written as 

(2·130) 

Taking out the divergent part of Eq. (2 ·130), we "have 

(2·131) 

where we have used the fact that the effective action to the tree approxima­
tion is the tree action, 

(2·132) 

I""V n+l-
The (n + 1) -loop part Tai:'l [~ Sw] consists of two kinds of terms, 

t~o 

(2·133) 

The first term on the right-hand side of Eq. (2 ·133) is amplitudes calculated 

with counter terms up to n-loop order and its inner divergences have been 
eliminated. The second term, s<n+u, is the (n + 1) -loop counter terms to cancel 
out superficial divergences. By substituting Eq. (2 ·133) into Eq. (2 ·131), we 
obtain 

s<Ol * ra~:'l[ t s<ilJ =o. (2·134) 
i~o 

We note here that the relation 

S(O) * s<n+l) = 0 , (2 •135) 

holds since ,S<n+t> is a local gauge invariant functional. Equation (2 ·134) 1s 

called the renormalization equation. [Lee 74]. 
The general solution of this functional equation 1s obtained as follows 

[Jogleker and Lee 76], 

where G1 is a local gauge invariant functional of gauge and matter fields and 
F is a functional of all fields and BRS sources. We should recall here that 
it is sufficient for the renormalizability that superficially divergent parts are 

cancelled out. The superficially divergent part off is the functional with di­

mension up to four. The solution (2 ·136) with dimension up to four is shown 
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to have the form of the action with a suitable redefinition of coupling constants, 

fields and sources. Therefore we can take the (n + 1) -loop counter terms as 

'n 
s<n+l>=- TS!v+l> [I:; s<i>] 

i~O 

(2·137) 

with appropriate renormalization constants. Thus the divergent part of 
r<n+r> [L:;i.:!"l s<n+r>] vanishes. Combining with the fact that in the tree approxi­

mation (the zero-loop order) the theory is finite, we have completed the proof 
of renormalizability to all orders. 

We explain below the relation between a symmetric theory and a sym­

metry broken theory. We show that the theory with spontaneous symmetry 
breakdown (symmetry broken theory) can be actually renormalized with the 

same counter terms as those for the symmetric theory. In principle the above 
proof for the renormalizability holds regardless of the structure of the vacuum, 
symmetric or symmetry broken, since we deal with the effective action which 

simultaneously describes systems with all possible vacua. However, the re­

normalization condition (2 ·137) actually requires symmetric calculation of the 
perturbation theory. In the symmetric calculation of a symmetry broken 

theory, the propagator of the corresponding Higgs field ¢ ( (¢)=!=0), that is,. 
the propagator expanded from the point (¢) = 0, has negative mass squared. 

Therefore, it is non-trivial whether a consistent symmetric and mass-independent 
renormalization procedure exists. 

Symmetric and mass-independent renormalization schemes are obtained by 

several authors. [Weinberg 73, 't Hooft 73, Kugo 77, see, also, Collins and 
Macfarlane 74]. The most convenient one is the minimal subtraction scheme 
by 't Hooft. Consider a gauge theory with a Higgs potential Lagrangian, 

In this theory we define renormalization constants as usual. For m02 we 

define 

In the minimal subtraction scheme we subtract only pole terms at D = 4 in 
the D-dimensional regularization. In this scheme all dimensionless renormali­
zation constants including Zm are determined as follows: 

z- ~c 1 
i- ~1 n (D-4)" ' (2·140) 

where C,. is a function of renormalized coupling constants (dimensionless). By 
using this scheme, we renormalize symmetric (m2>0) and symmetry broken 
(m2<0) theory simultaneously with common counter terms. The difficulty 
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which may be caused by the negative mass squared does not occur. In a 
usual mass-dependent renormalization scheme a negative mass squared of the 

propagator brings about the difficulty that renormalization constants which 
should be real are actually estimated to be complex. 

By using the above symmetric and mass-independent renormalization scheme, 
we obtain the effective action for the symmetry broken theory (m2<0) as 
follows. First of all, we calculate the effective action in the symmetric theory 
with a positive m 2 and make it finite by renormalization. Then we set m 2 to 

be a negative value. We find the ¢min which gives the absolute minimum of 
the effective potential. Finally, we reexpand the effective action with (/) = ¢ 
-¢min and obtain the effective action of the symmetry broken theory expressed 
by the true excitation mode of fields. If it is necessary, we may impose an 
additional finite renormalization on the obtained effective action. Of course, 

no difficulty takes place in the procedure of this additional renormalization. 
The renormalization conditions for amplitudes in the minimal subtraction 

scheme is not clear. We present explicitly a set of renormalization conditions 
for a symmetric and mass-independent renormalization scheme [Kugo 77]. 
The point is to renormalize the effective action so that it becomes a finite 

functional of both fields and mass m 2 with common counter terms. The re­
normalization condition appropriate for this purpose is, for example, 

r<2l (P2=0, A, m2=0) =.0, 

fJr<2) 
fJm2 (p2 = 0, A, m2) I m•=p' = 1 ' 

ar<2l 
fJp2 (p2,A,m2=f1.2)1P'=o=-1, 

r<4l(p2=0, A, m2=p.2) =-A' 

(2 ·141a) 

(2·141b) 

(2·142) 

(2·143) 

where r<n) IS the n-point function of Higgs ¢ in the momentum representation, 

and ti is a renormalization point. We have not set tl equal to zero on 
account of the infrared divergences. Here we should notice that a usual 
mass renormalization condition is split into two conditions (2 ·141). This is 
necessary to renormalize the effective action comprehensively as a functional 
of fields, coupling constants and mass m 2 with mass independent counter terms. 

In order to satisfy the above renormalization conditions, we must prepare two 

terms for the mass counter terms; one is proportional to m 2 and the other 
is a constant independent of m2 • We introduce renormalization constants and 
separate _[ v into the tree part and the counter-term parts as follows: 
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rPo = z</>lf2rjJ' 

Ao = Z A Z </> - 2). , 

mo2= ZmZ<f> - 1m 2+ tJm2Z</> -l, 

..fv=..fv'+..fve, 

_[ v' = _ ..!_ m2,1.2 _ ~A.4 
2 'I' 4!'1'' 

(2·144a) 

(2·144b) 

(2·144c) 

(2·145) 

(2·146a) 

(2·146b) 

By introducing mass renormalization constants Zm and tJm2 redundantly as in 
Eq. (2 ·144c), we have necessary mass counter terms for the renormalization 
conditions (2 ·141). All the renormalization constants (Zi>, ZA, Zm, tJm2) are 
determined mass-(m2-) independently. The counter term tJm2 can be identi­
cally zero especially in the minimal subtraction scheme. 

The relation between the symmetric ( (r/J) = 0) and symmetry broken ( (r/J) 
,PO) theories which is explained above is easily understandable by graphi­
cal manner. Consider a fermion loop contribution to the self-energy of a gauge 
boson in a symmetry broken theory. The fermion is assumed to be massless 
in a symmetric theory and to acquire mass from a vacuum expectation value of 
Higgs scalar rjJ. We expand the self-energy graph such that 

<$> <cj» 

-c>-+ <3--
<<j>> <<j>> 

t I 

' ' 
+ -0"" +·'. ' 

I t 

' I <$> <<j>> 

(2·147) 

where the fermion line represents massive (massless) propagator on the left 
(right) -hand side. The ultraviolet divergences occur only in the first and 
second terms on the right-hand side of Eq. (2 ·147). These two divergences 
correspond to those in the symmetric theory; one corresponds to the two-point 
function and the other corresponds to the four-point function of gauge bosons 
and Higgs scalars. Thus counter terms for the symmetric theory also cancel 
out divergences in the symmetry broken theory. As will be shown below, 
some kinds of universalities between amplitudes hold in the symmetric theory. 
In the symmetry broken theory, for example, in Eq. (2 ·147) only the first 
and second terms on the right-hand side satisfy these universalities and the rest 
terms break them. Though the breaking terms are finite, these universalities 
do not hold in the symmetry broken theory. This point will also be mentioned 
later. 

In the following we give explicit expressions of the WT identities in the 
form of Green functions which guarantee the renormalizability in a symmetric 
theory with a simple group. We deal with four examples: a) two-point func-
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tion of gauge bosons, b) three-point functions of gauge bosons and ghosts, 
c) three-point functions of gauge bosons and fermions and d) four-point func­
tions of gauge bosons. In a) we show that gauge bosons remain massless with 
higher order corrections. In b) "-'d) we clarify constraints among various 
vertices which are indispensable for the proof of the renormalizability because 
all relevant couplings in the Lagrangian are described by unique coupling 
constant (g and· g2). 

a) We begin with the WT identity (2 ·120) : 

l1i' . l1i' + l1i'. l1i' + lJ!. l1i' 
lJW.a lJKa" iJc/Jt iJK"', iJcpi lJK~, 

+ l1i'. l1i' + l1i'. l1i' =O 
/J(/)i lJK., lJca lJKc~ ' 

(2·148) 

where Greek letters represent group indices of the adjoint representation. 
We make differentiation of Eq. (2 ·148) : 

--=-----=--=-=----Eq. (2 ·148) , (]2 I 
lJW/iJcr o 

where the symbol [0 represents setting all field variables to zero. Taking 
account of the ghost number conservation, we have only one term, 

(2·149) 

In the momentum representation we define invariant amplitudes as follows: 

F"" CP) = sd4xelp(r-u> lJ2f' 
afl lJWI'a(x)lJW/(y) 

=lJaP {A cP2) ( g"" _ p;r ) + B (p2) p;r}, (2·150) 

2~ 

G~fl (P) = sd4x elp(r-Y) (] r 
iJK/(x) iJcr> (y) 

= pP(Jaf3G (p2) . (2 ·151) 

We write them graphically as (see Appehdix G), 

~ ~\) r~PCP)=. . , 
a 13 

(2·152) 

G" (p)= ll/Q a{l . - • • • •(·- . ' 
a S 

(2·153) 
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where the dotted line represents the current of the conserved ghost number 

and the black dot stands for the local operator product of BRS transform 
(~BRSW/ in Eq.(2-153)). We note here that a derivative of the effective 

action F with respect to a BRS source K equals that of W defined in (2 · 95) : 

~r _or_ ~w 
~K- oK --iJK . 

With the above graphical notations Eq. (2 -149) 1s expressed as 

~y=C. 
In terms of invariant functions we have from Eq. (2 ·155) 

(2-154) 

(2-155) 

(2-156) 

As will be shown in Eq.(2-169), the function ~G(p2) is equal to the inverse 
propagator of the ghost and it cannot be identically zero. Hence we have 
the identity, 

(2·157) 

Because of this identity the propagator of the gauge boson without gauge 

fixing term contribution is 

(2·158) 

that is, transverse. The pole position of the propagator remains zero because 
of Eq. (2 ·157) and another identity, 

A(O) =B(O). (2·159) 

This identity (2 -159) is nothing but the requirement that the one-particle 
irreducible graph (the inverse propagator TP") does not have any pole at least 

in the perturbation theory. Thus the gauge boson is massless in any order 
of the perturbation theory and the second order divergence does not appear 
in the gauge boson self-energy. We can make the self-energy finite only by 
adjusting the wave function renormalization constant of the gauge boson field. 

b) We proceed to the three-point vertices of gauge bosons and ghosts. 
The differentiation of the WT identity (2 -148) gives the following relations: 

(]3 I oW/~W/acr Eq. (2·148) o : 

P.j.grua p .. ----:. + Jl ...--... p-d 
a Y ~-~Y 

q ,j. \) 8 

(2-160) 
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The invariant amplitude of the tree three-vertex of gauge bosons corresponds 
to g"'(p+q)PfaPr term. The relevant part of Eq.(2·160) is written as 

iT (P, k) g"' PP j«P8k/]8TG (k) 

+~aBA( P;k)g"P.gP"H(P, k)j8Pr 

+~P8A( P;k)g•P.gP"H( -P, k)j8"'T=O' (2 ·161) 

where 

P=q+ P, k=q- p, (2·162) 

and we define the invariant functions r and H as follows: 

P~~a 
~ =ig""PP j"'Prr(P, k) +[other 

q Jv B 

invariant amplitudes], (2 ·163) 

v?g 

~P -~B =gP•pPrH(P, k) +[other invariant amplitudes]. (2·164) 

OL~ 
With the operation of ~ /~kPI kp~o,P'~o to Eq. (2 ·160) we have 

iG (O)T (0, 0) =A' (0) H(O), (2 ·165) 

where for simplicity we neglect the effect of the infrared divergences contained 
in the above functions. No form factor other than g"' P''faPr term in (2 ·163) 

contributes to Eq. (2 ·165) . 

Next we use the second type of the WT identities. We adopt a gauge 
fixing Lagrangian, 

(2·166) 

which preserves the global symmetry. In this gauge the WT identity (2 ·119) 
reads 

(2·167) 

By differentiating Eq. (2 ·167) with respect to cP, we have 

. ]l (Q + ••• Q ... =0 
-J.p --- ·<-- a V B ' 

a B 
(2·168) 
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that is, 

(2·169) 

where we define the ghost inverse propagator as 

(2 ·170) 

We obtain a useful relation from Eq. (2 ·169), 

G (O) =ir' (O). (2·171) 

Further differentiation (}2j'aW/(}cr of Eq. (2 ·167) gives 

e "q Qv 
-iPil ~~v ~ + ~ --- ~-- -- +- =0 ~--w y k p 0: y k • 

that is, 

H(P, k) = -T.(P, k), 

where r. is defined as 

Oq 

p k = -ip•JaflrT.(P, k) +[other invariant 
~- -~ 
0: y 

Consequently we obtain the identity, 

T(O, 0) 
A' (0) 

-iH(O, 0) 
G(O) 

r. co, o) 
r' (O) 

(2·172) 

(2·173) 

amplitudes]. 

(2·174) 

(2·175) 

where we have used the relations (2 ·165), (2 ·171) and (2 ·173). 
The corresponding renormalized functions are the coefficient functions of 

the renormalized field variables of the effective action: 

TR=Zs312T, 

AR=ZsA, 

TcR=Zs112ZcTc, 

where Z factors are defined as follows: 

W"==Z/12W R"' 

c=Zc1f2cR, 

(2·176a) 

(2·176b) 

(2·176c) 

(2·176d) 

(2·177a) 

(2·177b) 
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(2·177c) 

In terms of these renormalized amplitudes the identity (2 ·175) Is rewritten as 

TR(O, 0) 
AR' (0) 

TeR(O,O) (= -iH(O,O) zt;2). 
rR' (O) G (O) 3 (2·178) 

This relation represents that if we can make r R finite, which is possible, of 
course, by adjusting the charge (g) renormalization constant, we obtain the 
finite FeR automatically. 
also makes FeR finite. 
of gauge theories. 

In other words, the counter term to make r R finite 
This property is an ingredient of the renormalizability 

Here it should be noted that we have not neglected any finite term in 
deriving the relation (2 ·178). Taking the on-shell renormalization conditions 
(see § 3. 2), 

A' (O) = r' (O) = -1 , (2·179) 

the equality of the on-shell charge (the charge universality) between the 
cubic self coupling of gauge bosons and the gauge-ghost coupling is proved: 

iH (0, 0) z 1;2). 
G(O) 3 

(2·180) 

This Is also called the Slavnov-Taylor identity [Slavnov 72 and Taylor 71]. 
This relation is not a direct result of the renormalizability of the theory, 
since it shows an equality including all finite contributions. In this sense the 
renormalization equation (2 ·134) does not assure the charge universality, 
which is no more than closed relations among infinite parts. 

c) Next we investigate gauge couplings of fermions. By a similar 
differentiation of the WT identity (2 ·148), we obtain 

P.J,~~ + --e--4 + --e--4 = 0 
q.J,v··\1---~ (2 ·181) 

We rewrite it as follows: 

rF"'(P, k) ·k"G(k2) = K(P;k)HF(P, k) + HF(P, k)K(P;k), (2·182) 

where we have used invariant functions defined by 

p . e <=-: ==iJt' K (P), (inverse propagator) 
~ J 

(2·183) 
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(2·184) 

(2·185a) 

(2·185b) 

Here Tf1 is generator matrices of the representation of the fermion. In the 

above definitions we have supposed that different multiplets of fermions do 

not mix with each other for simplicity of the argument. It should be noted 
(-) 

that K and H F are matrices with spinor indices and are not commutable 

with each other. We define renormalized quantities as follows: 

1/J = Z /121/JR ' (/j = Z /12(/j R ' 

KR=ZFK' 

(-) 

(2·186) 

(2·187) 

(2·188) 

By analysing the structure of K and H F and using the on-shell renormali-

zation conditions for KR (see § 3. 2. 2), we obtain the final result, 

We differentiate furthermore the WT identity (2 ·148) in order to deduce 

information on H F: 

ll 
j rte X ~ 

P+if\_ da+~~ 
q.~·-q. i (l 

l. k 

+ X -~i=O' j~Cl (2·190) 

where momenta k and r are set equal to zero and all amplitudes are sand­

witched by on-shell spinors, which are represented by the symbol -I. Taking 

corresponding form factors, we obtain 

(2 ·191) 

Equation (2·191) is reduced to 

H(O, 0) =iHF(P2 =4mF2, k=O), (2·192) 
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where use has been made of commutators of generator matrices: 

(2·193) 

From Eqs.(2·178), (2·189) and (2·192), we have 

T" (P2 =4m 2 k=O) =r"iH(O, O) Z 1; 2 =r"T (0 0) =r"T (0 0) 
FR F , G (O) 3 R , cR , • 

(2·194) 

This identity assures the renormalizability for gauge couplings of fermions and 
the on-shell charge universality among gauge couplings of fermions, of ghosts 
and of gauge bosons themselves. 

d) Finally, we study the four-point function of gauge bosons. We differ­
entiate the WT identity (2 ·148) : 

:."0: q."A.:~P+ [po<mo<aHonJ -o, ;~~--v ~7--'vlo (2·195) 

where all particles are on their mass shell. We define the invariant amplitudes 
of the four point function: 

invariant amplitudes]. 

(2·196) 

By extracting faP"'f'8"'g"P(p+q)" term in Eq.(2·195), we obtain 

T4 (0, 0, O)G (0) =iT (0, 0) H (0, 0). (2·197) 

With the aid of Eq. (2 ·165) and the definition of r 4R• 

(2 ·198) 

we have the identity, 

r4R(o, o, o) =- {r R(o, o) }2/ AR' co). (2·199) 

Thus r 4R (0, 0, 0) is renormalized to be gR2 under the on-shell renormalization 
conditions: r R (0, 0) = gR and AR' (0) = -1 (Eq. (2 ·179)). 

We have shown how the identities assuring the renormalizability are 
obtained from the WT identities. Those identities express the on-shell 
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charge universality as a by-product in a gauge theory without spontaneous 
symmetry breakdown. Two properties of the theory, the renormalizability 

and the charge universality, are essentially independent. Actually in a sym­
metry broken theory the charge universality is broken though the renormaliza­
bility holds. The difference between these properties is in the fact that the 
renormalizability is related to the infinite part of amplitudes, while the charge 
universality is the property of full amplitudes with all finite terms (see also 

§ 3. 4). 
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Chapter 3 

On-Shell Renormalization in Electroweak Theory. I 

We start with a general discussion on renormalization procedure and, at 
the same time, explain problems associated with choice of renormalization 
schemes. We then restrict ourselves to the on-shell renormalization scheme 
in the Weinberg-Salam theory. A detailed discussion will be given on the 
derivation of on-shell conditions. Special attention will be paid to two-point 

functions which exhibit complicated structure. Finally we give a proof of 
the universality of the electric charge by the full use of our on-shell scheme. 

§ 3. 1 Renormalization schemes 

We would like to present a general procedure in renormalization calcula­
tions. In this process several problems arise: There are some ambiguities 
in defining renormalized parameters in the theory and also in giving numerical 
values to these parameters from the knowledge of experimental data. 

Suppose that we calculate physical quantities, F, in a renormalizable 
field theory which includes a bare parameter g0 (coupling constant) among 
others. Physical quantities, F, expressed in terms of g0 are divergent in 
general and the renormalization is necessary.*) The definition of the renor­

malized coupling constant g, however, is not unique. In order to give an 
explicit expression for F in terms of g, we must fix the scheme. The numeri­

cal values of F are predicted by determining the value of g. To give the 
value of g we choose some reliable experimental data. 

If the theory can be solved exactly, this apparent ambiguity in defining 

g does not affect physical predictions. We have, however, only perturbative 
method at hand and we have to truncate the series at some order. In this case 

the physical predictions, in general, may be affected by the ambiguities in g 
(e.g., "scheme dependence problem" in the perturbative QCD). Moreover there 

appears another ambiguity in determining the numerical value of g from the 
experimental data. For example, suppose that we have two independent 

physical quantities, (J (g) and r (g)' and experimental data on (J and r are 
given. The value of g determined perturbatively by using the data on 6 may 

be different from that for r by the amount which is interpreted as higher 

order effect. 
Let us now specialize to the W einberg-Salam theory in which several 

*l We here mention only the ultraviolet (UV) divergences. Infrared divergences will be 
discussed in practical calculation (Chapter 5). 
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independent parameters appear. Different choices of set of independent param­

eters give rise to the apparent difference in expressions of the Lagrangian. For 

example, several authors use the set of parameters, *l g (SU(2) coupling), 

sin ew and Mw. It is also possible to choose the set e, Mw and Mz, which 

is our choice in this paper. (Accordingly, the Feynman rules are expressed 

by e, Mw and Mz as shown in § 4. 2.) 

With a set of parameters suitably chosen, one can calculate a relevant 

S-matrix element as a function of these parameters. To eliminate ultraviolet 

divergences which may appear in the course of the calculation, one applies an 

appropriate renormalization scheme. As stated before, the choice of the re­

normalization scheme is rather arbitrary. The so-called MS ['t Hooft 73], 

MS [Bardeen et al. 78] and MOM [Celmaster and Gonsalves 79] schemes in 

quantum chromodynamics are some of the typical examples. If we know an 

exact solution of the theory, different choices of the schemes do not cause any 

difference in the resulting S-matrix element although its expression as a func­

tion of the renormalized parameters may differ. In truncated perturbation theo­

ries, however, different choices of the schemes can lead to different physical 

predictions. 

In the Weinberg-Salam theory it is often a standard manner to use, as 

in QED, the fine structure constant a=e2j4n: defined in the Thomson limit as 

an expansion parameter. This means that we choose a specific scheme to 

define a, i.e., the on-shell scheme. As we have more parameters other than 

a, i.e., Mw and Mz, we must specify the prescription to split bare parameters 

Mwo and Mzo into renormalized parts and counter terms, Mw~=Mw2 +0'Mw2 

and Mz~=Mz2 +0'Mz2• We adopt the scheme which is straightforward gener­

alization of the one commonly used in QED: We determine, for example, 

counter terms O'Mw2 and Zw(W field renormalization constant) so that the 

transverse part of the renormalized W boson self-energy, ARw (q2), behaves as 

(3-1) 

With this condition, the renormalized mass Mw is identical to the pole position 

of the W propagator, i.e., the physical mass. For this reason our scheme is 

called the on-shell scheme. 

The S-matrix element is now obtained perturbatively as a function of re­

normalized parameters e, Mw and Mz in a specific renormalization scheme (the 

on-shell scheme in our case). To obtain the physical prediction on the S­
matrix element, we must determine the values of these parameters with the 
help of given experimental data. The values of e, Mw and Mz can be de-

*l The WS theory with one Higgs doublet includes five kinds of independent parameters. 
As two parameters other than those shown here, m, (fermion mass) and m~ (Higgs mass) 
are usually used. 
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termined if we have three pieces of independent experimental information. 
(The value of e is actually determined in the Thomson limit without recourse 
to the perturbative argument. Thus the value of e is exact and this scheme 
is a preferred scheme in the W-S theory as well as in QED.) It is this 
stage where an ambiguity in predicting radiative corrections to the S-matrix 
element creeps in as far as we use the perturbation theory. Of course this 
ambiguity does not exist if we know an exact solution. As a set of experi­
mental data, a"xp, rexp and Rexp are often utilized, where r is the total width for 
the decay tt~evv and R is a ratio of neutral current cross section to charged 
current one or a ratio of cross sections of neutrino and antineutrino processes 
(e.g., R = (J' (ve~ve) /6 (ve~ve)) Y Assume that we perform the calculation 
to n-loop order and determine the values of Mw and Mz using the data rexp 

and Rexp. We denote those values by Mw<n> and Mz<n>, and r and R calcu­
lated to n-loop order by r<n> and R<n> respectively. We have 

(3·2) 

(3·3) 

If the masses of vV and Z bosons will be measured directly in the near future, 
we may also choose the set of parameters Mwexp and Mzexp as input data instead 
of rexp and Rexp (another obvious parameter a is neglected), and substitute 
Mwexp and Mzexp directly into the renormalized parameters Mw and Mz. In 
our previous papers [Aoki et al. 80 and 81], we have taken the latter set**> 
and given the numerical results. In this article we will consider both sets 
and give corresponding results. Another set we analyze in this article is the 
one eexp, rexp and Mixp. This set is interesting in the sense that the high 
accuracy of the mass determination of Z boson is expected in coming ex­
periments. 

We have given a brief summary concerning the renormalization schemes. 
We show it schematically in Table 3. 1. 

Finally we wish to stress that our scheme in which parameters a, Mw 
and Mz are used and the subtraction of UV divergence is made on mass shell, 
1s a natural extension of the renormalization in QED, and is very convenient 
and physical since the parameters Mw2 and Mz2 directly correspond to the 
pole positions of gauge boson propagators, that is, the physical masses. (For 
example, if one chooses another scheme with the Weinberg angle, 8w, as one 
of the parameters, there appears an ambiguity in defining the angle 8w since 
it is not the physical quantity. This point will be discussed in § 7. 1.) 

*> We have put the suffix "exp" to a, r and R to stress that they express experimental 
values. 

**> Since W and Z bosons are not yet observed, we have assumed suitable values for Mwexp 
and Mzexp. 
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Table 3. 1. Flow chart for renormalization procedure. 

Choose a set of independent parameters 
(Present case; eo, Mwo, Mzo, m,o, m~o) 

Separate the bare parameters and fields into renormalized parts and counter terms. 
(Introduce renormalization constants.) a> 
eo=Ye, Mw~=Mw"+OMw", Mz~=Mz"+OMz", 
c{lo=ZV"cfJ, w •• =Zw'1"W., 

Choose a subtraction scheme to fix the counter terms. 

Calculate relevant amplitudes with a suitable regularization of UV divergences. 

Eliminate all divergences by the above counter terms and subtraction conditions. 

We obtain the finite S-matrix element as a function of the renormalized parameters, e, Mw, 
Mz, m, and m;. But numerical values of the renormalized parameters are not yet fixed. 

Choose input data in order to fix the values of the renormalized parameters.b> 
(Present cases; 1) a, Mw, Mz, m1, m~, 2) a, r, R, m" m;, 3) a, r, Mz, m1, m;) 

We can predict for various physical quantities as functions of the input data. 
a) The full list of counter terms is given in §4. 3. 
b) F=.F(f.l-7evv), R=.r1(v.e-7v.e)/r1(v.e-7v.e). 

§ 3. 2 On-shell renormalizatio~ condition 

In this section we present a general discussion about the on-shell renormali­

zation conditions without special recourse to the Weinberg-Salam theory. We 
start with the case of scalar fields. We recapitulate the reduction formula 
for the S-matrix in order to clarify the relation between the S-matrix element 
and the corresponding Green function. The on-shell renormalization conditions 

are defined and their explicit forms are given in the case with particle mixing. 
We proceed to the case of Dirac fields where non-commutativity of propagators 

should be taken into account. Finally the case of vector bosons is studied, 
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where the mixing with scalars including Nambu-Goldstone bosons makes a 
little complication. 

3. 2. 1 Scalar fields 

First we would like to recapitulate the framework of dealing with the 
S-matrix for scalar fields in the case without mixing. The S-matrix element 
is given by, in the Heisenberg picture, 

(3·4) 

where lin) and lout) are in and out asymptotic states respectively which are 
eigenstates of the total Hamiltonian and of other conserved charges including 

total momentum. These asymptotic states are constructed by repeated applica­

tions of creation operators a!n (k,) to the vacuum 10). These creation operators 
out 

form corresponding asymptotic fields: 

(3·5) 

where f~c (x) are normalized solutions of the Klein-Gordon equation. The 
asymptotic field satisfies a free field equation: 

(3·6) 

where f/Jas represents f/Jin or f/Jout· The Feynman propagator for f/Jas reads 

Llas(P2)=i S <OIT¢as(x)¢as(Y) IO)d4 (x-y)e-tp(.t-!l) 

=FT i<OIT¢as(x)¢as(Y) IO) 

1 

where FT denotes the Fourier transformation defined above. 
This asymptotic field is related to the Heisenberg field as 

¢ (x) --7 Z112¢in (x) , t--7 =F oo . 
out 

(3·7) 

(3·8) 

It should be noted that the limit in Eq. (3 · 8) is the so-called weak limit. 
This relation is the well-known LSZ asymptotic condition [Lehmann et al. 55]. 
The factor Z112 appearing in Eq. (3 · 8) is interpreted as an amplitude that 

¢ (x) creates the one-particle state out of the vacuum: 

<P: asl¢(x) IO)=Zlf2<P: asl¢as(x) IO) 

=Z1J2f~c*(x). (3·9) 

Using this relation, the spectral representation of ¢ propagator [Umezawa and 

Kamefuchi 51, Kallen 52, Lehmann 54], 
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(3·10) 

1s separated into one-particle and continuous-spectrum contributions: 

(3 ·11) 

Note that the propagator L1 (P2) is defined analogously by Eq. (3 · 7) if one 

replaces ¢as by ¢. Equation (3 ·11) shows that the factor Z defined in the 

asymptotic condition (3 · 8) is calculated as a pole residue of the full propagator. 

With the aid of the asymptotic condition the S-matrix element defined 

by Eq. (3 · 4) is related to the Green function: 

im+n s " m 
= (Z'I2) m+n }J d'xi Q d 4y 1 • f~c, (xi) (0,, + m 2

) 

X (O/T¢(y,) ···¢(Ym)¢(x,) · ··¢ (x,.) /0) (0 11,+ m 2) f:; (y 1) (3 ·12) 

This is called the reduction formula [Lehmann et al. 55]. 
S-matrix element (3 ·12) is represented by 

Schematically the 

(m2-k 2)--J_ I 
' z';z 

(3·13) 

where G is the corresponding Green function in the momentum representation. 

Taking account of the expression of the propagator (3 ·11), we notice 

that each external-line factor (m2 -k/) z-112 in (3 ·13) picks out the pole part 

of the propagator leaving the factor Z'12• Consequently the reduction formula 

states that the S-matrix element is just the corresponding Green function with 

the external legs amputated where the external momenta are put on the mass 
shell and the factors Z112 are multiplied on each leg: 

S=0Z'12 

~· 
(3 ·14) 

where the cross mark stands generally for all amputated legs. 

Now we discuss the renormalization conditions. The renormalization con­

ditions are necessary to calculate Green functions, although they have no 

effect on the representation of the S-matrix itself which is expressed only by 

Heisenberg fields and well-defined Z112 factor. In order to follow the renor­

malization procedure, we introduce a wave-function renormalization constant 
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Z 112 which is determined by a suitable renormalization condition, 

¢(x) =Z112 rPren(x) . (3·15) 

It should be noted that Eq. (3 ·15) is an operator equation and the factor 

Z 112 has nothing to do with Z112 introduced before. One can, however, choose 

the renormalization condition 

(3 ·16) 

With this choice of renormalization scheme the Z112 factors in Eq. (3 ·14) can 

be regarded as usual counter terms for renormalized Green functions. Such 

a renormalization condition that ensures the equality of Z112 and Z112 is called 

the on-shell renormalization condition. This scheme is simple and convenient 

noticing that we need Z112 to obtain S-matrix elements. 

Next we discuss the problem of mass renormalization. Although the mass 

renormalization has no direct effect on the relation between the S-matrix and 

Green function, the mass shift in Green functions should be taken into account 

in perturbative calculation. The full propagator takes the form 

where m is the renormalized mass which is taken to be equal to the physical 

mass. The proper self-energy part is denoted by II (P2) in which mass counter 

term fJm2 is included. Referring to the reduction formula (3 ·12), we adjust 

fJm2 so that the pole position of the propagator coincides with the mass squared 

m 2 loop by loop, 

(3·17) 

By the on-shell condition we mean that, m addition to Eq. (3 ·16), the con­

dition (3 ·17) is implicitly imposed. 

We define the renormalized propagator by 

Jren=FTi(OJT¢ren(x)¢ren(Y) JO)=l_J. z 
The pole part of .dren is given by 

1 z 1 z 
.dren[pole] =-J[pole] =- =-.das, 

Z Z m 2-p2 Z 
(3 ·18) 

where the mass renormalization has already been taken care of. By requiring 

Eq. (3·16), we get an equality between .dren[pole] with the on-shell condition 

and .das· Now we write down the on-shell renormalization conditions ex­

plicitly i.n terms of the inverse propagator, 

(3 ·19) 

or m terms of the proper self-energy part, 
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(3·20) 

We proceed to the case with particle mixing. In this case all particles 
other than the lightest one are unstable and can decay into the lightest par­
ticle with emission of photons. Rigorously speaking, such unstable particles 
have no corresponding asymptotic field, and their propagators have poles at 
the position m/-iF1, where r, is the total width. In the following, how­
ever, we adopt the approximation in which we neglect the finite width of 

particles and consider only the real part of the propagators. 
Let us take the sector with N particles. Their asymptotic fields (in the 

sense of the above approximation) are related to Heisenberg fields with the 
matrix Z112 factor; 

¢£(x) ~z~1/ ¢/•(x), 

Zi]/2 ¢,(x) ~¢£a•(x) 

The propagator of this sector, 

(3·21a) 

(3·21b) 

(3·22) 

has N poles, positions of which are m/ ( i = 1· · · N), the mass of ¢;as. The 

pole part of the propagator is estimated by using Eq. (3 · 21) : 

= Z~/2 Zl/2 (} mn 
t.m jn 2 2 ' m,.-p 

(3·23) 

which shows the relation between Z;1 and the pole structure of the propagator 

ilij• 

The S-matrix element with external line i, Si, is related to the Green 
function G in 'such a way as 

(3·24) 

where by suffix amp we mean that the Green function G is amputated. Sub­
stituting Eq. (3 · 23) for the propagator into Eq. (3 · 24), we obtain 

S _ gk z~112 z~112 rJ mn (m 2 _ p2) z~ -1;2 
i - am km jn 2 2 i iJ 

m.,.-p 

_ C':._k z~112 
-~ ki• (3 ·25) 

The wave function renormalization constants are introduced in the matrix 
form: 
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The renormalized propagator is defined by 

and its pole part reads 

- z1!2z1!2z-1/2 z-1/2 ,4as 
- im jn mk n!-"~!, 

where mass renormalization has already been taken into account. 

zation conditions in which ZY/ = z~~2 are given by 

These are the on-shell renormalization conditions with mixing. 

(3 ·26) 

(3 ·27) 

Renormali-

(3·28) 

We transform these conditions to those for the inverse propagator. In 

the region of P2 very close to mn2 the renormalized propagator has a pole 
in (n, n) component and other components are regular (0(1)): 

(3·29) 

(3·30) 

The inverse propagator is obtained by inverting the matrix of Eq. (3 · 29) : 

(3. 31) 

where det LFen is the determinant of the matrix J~jn and AiJ IS the (i, j) 
cofactor of J~jn. The determinant of rn is given by 

(3·32) 

and therefore, 

(3 ·33) 

On the other hand, the cofactors are of 0 (1) for i = n or j = n while they 
are of 0(1/e) for i=l=n and j=f=n. 

Hence we obtain 
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(3· 34) 

In other words, 

for i=j=n , 

.d~jn-11 = { ~ ( S) 
p2-mnz 

0(1) 

for i=n, j=f=n and i=/=n, j=n, (3·35) 

otherwise. 

It is now obvious from Eq. (3 · 35) that our on-shell renormalization conditions 
for .dr'Jn-1 read for all n (1· · · N) : 

i) i =j= n, 

(3 · 36a) 

_a_Jren-1 (m 2) = _ 1 ap2 nn n , (3. 36b) 

ii) t = n, j=f=n , 

(3 ° 37) 

iii) i=l=n, J = n , 

(3 ° 38) 

Note that we need not impose the condition on .dr'Jn-1 for i=f=n and j=f=n. These 
conditions ensure the equality ~~2 = z~~2 and the external ZVt_2 factor in Eq. 
(3 · 25) is interpreted as the counter term generated by the replacement of 
Eq. (3 · 26) in the Lagrangian. 

In the following we argue that the number of renormalization conditions 
(3 · 36) '"'-' (3 · 38) is equal to that of independent renormalization constants by 
which the renormalized propagator is determined. Not all renormalization 
conditions are independent of each other. In fact only the conditions on the 
( i, j) components (i> j) are independent since .dfjn is symmetric by exchange 
of i and j. First of all, the condition (3 · 36a) is satisfied by adjusting the 
mass counter terms (}m/. There remain N conditions (3 · 36b) and two con­
ditions for all i> j: (3 · 37) and (3 · 38). The number of the conditions in 
total amounts to N 2 ( = N + 2NC2). 

the N 2 degrees of freedom of ~~2• 

1s not orthogonal but a general real 
it are independent of each other. 

These N 2 conditions can be satisfied by 
It should be noticed that the matrix ~~2 

matrix, that is, all N 2 components of 
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Finally, we remark that the above property of Z}:? means that the asymp­

totic fields or states are not related to Heisenberg fields through a general 

rotation in O(N) space. This fact is one of the most important points to 

understand and construct the on-shell renormalization scheme. This point is 

related to the ambiguity in defining sin28w including higher order terms in 

the Weinberg-Salam theory. There have been many confusions about this point 

in discussing the renormalization scheme of the Weinberg-Salam theory, which 

will be discussed later. 

3. 2. 2 Dirac fields 

For particles with spin 1/2 the derivation of the on-shell renormalization 

conditions is essentially the same as that for scalar particles except the fact 

that the propagators have spin indices and do not commute with each other. 

Consider the W eyl fields corresponding to irreducible representations of 

the Lorentz group, 

where we denote the chirality of the W ey 1 fields by the sufficies L and R. 
In general the mixing among all the Weyl fields should be taken into account 

in the renormalization procedure. The right-handed Weyl fields </JR,J(x) may 

be changed to the fields with the left-handed chirality such that 

(3 ·39) 

where C is the charge conjugation matrix. Then all the Weyl fields possess 

the left-handed chirality and mix with each other. 

In practical cases there are conservation laws which partly prohibit the 

mixings. The electric charge, for example, is assumed to be conserved. This 

assumption guarantees that only particles with the same charge can mix with 

each other. In the charged particle sector we adopt the Dirac field represen­

tation.*> In this case we define the relevant fields by 

(3·40) 

1 
¢L,i=2 (1- r6) ¢i, (3· 41a) 

1 
¢R,i=2 (1 + r5) ¢i. (3. 41b) 

We assume the following asymptotic conditions, 

*> It is possible to represent a charged particle by the two·component Weyl field. Such a 
particle is necessarily massless and is unrealistic. An extension of the formulation to 
include such a massless charged particle is straightforward (see the last part of this sub· 
section). 
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¢L,i(x)~Z¥Jt~/Jt~ 1 (x), 

¢R,i(x)~zw.~ij¢"£. 1 (x). 

(3·42a) 

(3·42b) 

We note here that the left- and right-chirality fields do not mix with each 
other because-of the fermion-number conservation which is directly related 
to the charge conservation. 

For neutral particles, e.g., neutrinos, however, the charge conservation 
has nothing to do with the fermion number conservation. In fact neutrinos 
can have the Majorana type masses as well as the Dirac type masses. In 
the case where the fermion number is not a good q1,1antum numbers, we must 
deal with a full mixing of all Weyl fields. We will comment on the on-shell 

renormalization conditions in this case at the end of this subsection. 
We go back to the case of the Dirac fields described by Eqs. (3 · 40) 

and (3 · 42). The renormalized fields are defined by 

¢L,i (x) =Zt:~1¢£:j (x), 

¢R,£ (x) ==Zt/,~1¢fi:j (x). 

(3· 43a) 

(3·43b) 

If the parity transformation which exchanges L and R chirality is a symmetry 

of the theory, we have the identity, 

(3·44) 

Because of this relation we need not introduce independent renormalization 

constants for cfJL and c/JR in QED. In the W einberg-Salam theory the relation 
(3 · 44) does not hold, and ZI(2tJ and ztJ,2£J are independent constants. 

The on-shell renormalization conditions for the propagator 

(3·45) 

are 

(3·46) 

where the propagator for asymptotic fields is given by 

(3·47) 

The renormalized propagator has a pole only in the (n, n) channel at P2 = m,.\ 

n 

Stjn (p) P-;::;;;:, n ( . . . ~ . . ) 
m,.-p 

. . 

(3·48) 
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The inverse propagator 

K~jn (P) = {.sren (P)} £/ , 
behaves as 

n 

xren ~ ( M'"'(m.,.-p) ) 
ij p2-+mnz 

n ···(m,.-p)M"''··(~.,.-P)··· 

In the component form Eq. (3 ·50) is expressed as I (m.-p) 
for i=n, j=n, 

M'"'(m.,.-p) for i=/=n, j=n, xren ~ 
ij pll_,.mnll 

(m,.-p)M"'1 for z=n, j=f=n' 

arbitrary for i=/=n, j=f=n . 

(3·49) 

(3 ·50) 

(3 · 51a) 

(3·51b) 

(3 · 51c) 

(3· 51d) 

Note that Mii is generally uncommutable with p because of the existence of 
T5 in it. The ordering in Eqs. (3 ·50) and (3 ·51) guarantees that the mverse 
of K reproduces Eq. (3·48) properly. 

In order to write down the on-shell renormalization conditions (3 ·51) 
explicitly, it is convenient to introduce on-shell spinors u (m) and u (m) which 
are the solutions of the Dirac equations with mass m: 

(p-m)u(m) =0, 

u(m) (p-m) =0, 

(3 ·52a) 

(3·52b) 

where momentum pin u(m) and u(m) is suppressed. Using these u(m) and 
u (m), we can represent the conditions (3 ·51) in the following form: 

(3 · 53a) 

(3·53b) 

(3·54a) 

(3·54b) 

where the momentum squared p2 is set on the mass shell p2 = m/ in Eq. (3 · 53a) 
and P2 = ml in Eqs. (3 · 53b) and (3 ·54). The above expressions (3 ·54) cor­
respond to the fact that external-line corrections vanish automatically in the 
on-shell renormalization scheme: 
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Qw, u(m,)~o, (3-55) 

where .E is the self-energy part. 
We split the inverse propagator K (p) into four invariant functions: 

where terms containing 151'" do not appear since only one momentum variable 
p" is available to contract 15"". Using Eq. (3-56), the renormalization con­

ditions (3 ·53, 3 ·54) are 

[i=j] 

[i=Fj] 

Kfi(m/) +m;K;i(mi2) =0, 

2miKfu (mi2) +K~;(m/) +2m/K~u (m/) =1, 

K~:Cm/) =0, 

Kf1 (m/) + m 1K; 1 (m/) =0, 

Kf1 (m/) + miK~1 (m/) =0, 

The condition (3 · 57b) is concisely written as 

(3-57a) 

(3-57b) 

(3 ·57 c) 

(3-57d) 

(3 · 58a) 

(3-58b) 

(3 · 58c) 

(3·58d) 

(3 ·59) 

We then discuss the consistency between the numbers of renormalization 

conditions and renormalization constants. Because of the hermiticity of the 
effective action r which is formally guaranteed by the hermiticity of the 

Lagrangian, 

(3. 60) 

the inverse propagator has the following symmetry: 

(3. 61) 

In deriving the above symmetry we have used the relation 

(3. 62) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article-abstract/doi/10.1143/PTPS.73.1/1848359 by guest on 06 January 2019



Chap. 3 On-Shell Renormalization in Electroweak Theory. I 63 

It is easy to check that the above hermiticity condition is consistent with the 
renormalization conditions. The renormalization condition (3 · 53a) for i> j, 

(3. 63) 

implies 

(3·64) 

which is nothing but the condition (3 · 53b). Thus it is sufficient to impose 
the renormalization conditions only on K;1 for i>j. Those counter terms 
determined in the sector i?;j are sufficient to satisfy the renormalization con­
ditions for the sector i<j. In the sector i =j we obtain, from the hermiticity 
condition (3 · 61), 

(3 · 65a) 

(3·65b) 

(3 · 65c) 

(3·65d) 

Equations (3 · 65) indicate that all diagonal invariant functions are purely 
real or imaginary. According to these hermiticity conditions, the renormali­
zation conditions (3 · 53a) and (3 · 53b) and also [ (3 · 54a) and (3 ·54 b) for the 
sector i = j] are not independent of each other. 

Now we are ready for counting the number of independent conditions. 
In the sector i = j we have four conditions (3 ·57) since each equation is purely 
real or imaginary as seen in Eqs. (3 · 65). The conditions (3 ·58) for i> j 
are all complex equations, which correspond to eight real conditions. Hence 
t!J.e number of necessary conditions is 4N for i=j and 4N(N-l) for i>j. 
Thus it amounts to 4N2• Counter terms for the self-energy part are generated 
by the ZL and ZR factors and mass parameters as follows: 

_ (Zll2t M z112) 1 + r 5 _ (Zll2t Mt z1;2) 1- r 5 
L R iJ 2 R L ij 2 ' (3·66) 

where M is the bare mass matrix. The general mass matrix M can be 
diagonalized with real positive eigenvalues by an appropriate biunitary trans­
formation: 

(3. 67) 
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These unitary matrices U and V are absorbed into the definition of the ZL112 

and ZR112 matrices, and so independent mass parameters are only the m/s 
(i = 1'"'-'N) in Eq. (3 · 67). Furthermore the common phase rotation of ZL112 

and ZR112, 

does not modify the counter terms (3 · 66). Consequently the number of 
degrees of freedom of counter terms 1s 

(3 ·69) 

which coincides with that of the renormalization conditions. We should notice 
here that the matrices ZL112 and ZR112 are not unitary. This implies that the 

on-shell states cannot be obtained by the unitary transformation from those 
states corresponding to the Heisenberg fields. The situation is similar to 
the case of scalar fields. The above counting is not sufficient for the proof 
of renormalizability, but one can easily show that all equations of renormali­
zation conditions have a unique solution for counter terms. 

I 

Here we discuss the case where the fermion number is not necessarily 
conserved, for example, the case of neutrinos. In general all fermions are 
the Majorana particles in this case. We represent these fermions by the 
four-component Majorana fields which satisfies the self-charge-conjugate con­
dition, 

(3 ·70) 

This representation 1s more convenient than a two-component representation 
because a trace including both Dirac fields and Majorana fields has to be often 

calculated. The propagator of (asymptotic) Majorana fields is 

S~~=FT i(O/T¢~(x)~~(y) /0) 

1 
----

' m-p 

S~~=FT i(O/T¢~(x)¢~(y) /0) 

= -s~~c, 

S~~=FT i(O/T~~(x)~~(y) /0) 

(3 · 71a) 

(3·71b) 

=C-18~~, (3·71c) 

where we have used the Majorana condition (3 · 70). The on-shell renormali­
zation condition is 
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We only deal with the Dirac-like part of the propagator of Majorana fields 

(3 · 71a). The Majorana condition (3 · 70) for renormalized fields guarantees 

the correct form for S';"'n and sr,~n. Hence we obtain the same formulas of 

on-shell renormalization conditions as those for Dirac fields. The invariant 

amplitudes of the inverse propagator are, however, constrained by the Majorana 

condition (3 · 70) and the number of the independent renormalization conditions 

is reduced to 2N2 + N for the sector of N Major ana particles. On the other 

hand, the Majorana condition (3 · 70) for the renormalized fields imposes the 

relation 

and the degrees of freedom of the renormalization constants are also 2N2 + N. 
Finally, we comment on the model which we will adopt for the estimation 

of the radiative corrections in Chapter 5. In the model, neutrinos are de­

scribed by pure left-handed fields and are to be massless assuming the fermion 

number conservation. There is no mixing among different generations. This 

is a special case and the renormalization procedure becomes very simple. The 

inverse propagator of neutrinos is constrained so that 

The renormalization constant Z/'2 is introduced as 

We adjust this Z/'2 factor so that the renormalized inverse propagator K.;,en takes 

the form 

(3 ·72) 

This is the on-shell renormalization condition for the pure left-handed neutrinos. 

3. 2. 3 Vector boson sector 

In the vector boson sector mixings take place not only among vector 

fields but also among vector and scalar fields. Here the scalar fields are 

Nambu-Goldstone (NG) bosons or physical Higgs particles. In the case of 

the W einberg-Salam (WS) theory the neutral gauge boson sector is most 

complicated where Z and A bosons, NG scalar X3 and physical Higgs scalar 

¢ take part. If CP is a good symmetry, the physical Higgs if;(CP= +) de­

couples from the neutral boson sector (CP= -1). On the other hand, as far 

as we adopt a manifestly renormalizable covariant gauge, NG bosons, which 
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are absorbed into the longitudinal components of gauge bosons, must be taken 

into account in the calculation of Feynman graphs. 

We consider mixing of vector bosons Vi~ and scalars Xi· The asymptotic 

fields of vector bosons are given by 

Here Op.XJ term, i.e.,. the scalar mode, plays a role of guaranteeing that the 

asymptotic vector field satisfies the physical polarization condition: 

(3·74) 

According to the usual reduction formula, the S-matrix element with a Vl 
vector boson is obtained from the Green function as shown below, 

X (M/- p"t) e"', (3·75) 

where Mi is the mass of the V/·a• vector boson and e" is a polarization 

vector of the emitted (absorbed) vector boson, which satisfies 

p"'e"'=O. (3. 76) 

By this physical polarization condition the fJ"x1 part of the Green function in 

Eq. (3 · 75) does not contribute to the S-matrix element. Similarly the Green 

function with x1 on the k side in Eq. (3 · 75) does not contribute since the 

V/Xk transition propagator is proportional to the momentum p/1, which is 

contracted with e". Thus the part of the k-j transition propagator which 

contributes to the S-matrix element (3 · 75) is the vector-vector transition part 

alone. 

We decompose the vector-vector propagator into transversal and longitu­

dinal parts : 

LI"'"=FT( -i) (OJTV/(x) V/(Y) /0) 

(3-77) 

where T (P2) and L (P2) are invariant functions. In Eq. (3 · 75) only T part 

survives under condition (3 · 76) . The pole part of T is given by 

(3 -78) 

The S-matrix element 1s expressed as follows: 
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g k z112 z112 8m,. z-1/2 (M 2 _ p2) 8 
I' km jn M 2 2 ij i I' 

"-p 
(3·79) 

L).k 2~112 " 
~" kie. 

We introduce the renormalization constant Z~] such that 

(3. 80) 

The on-shell renormalization conditions in which Z~~2 = Z~~2 are 

(3 ·81) 

The mverse propagator may be expressed as 

(3·82) 

where 

The on-shell renormalization conditions in terms of A!J (P2) read 

[i=j] 

Au(M/)=0, Ai/(Ml)=-1, (3 ·83a) 

[i=f=j] 

(3·83b) 

Just as in the case of scalars, the wave function renormalization matrix 

~~2 is not orthogonal but is a general real matrix. An important point con­

cerning vector-scalar mixing is that the renormalization constants corresponding 

to the Zl.Jl1 factor in Eq. (3 · 73) are unnecessary for the purpose of obtaining 

the S-matrix element. Hence it is sufficient to introduce the renormalization 

constants only for vector-vector mixing part. Another point is that the on­

shell renormalization conditions are imposed only on Ai1 (p2 ). The counter 

terms for BiJ (P2) which are already fixed by the above conditions on AiJ (P2), 

actually cancel the infinity of BiJ (j}) and the full renormalized inverse prop­

agator is made finite automatically if the theory is renormalizable. 

Finally, we would like to make some comments. We can easily generalize 

the former results to the case of fields with arbitrary spin. First of all, we 

need not consider explicitly mixing of lower-spin fields such as scalar mixing 
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in the vector sector. The contribution of the lower spin fields vanishes be­
cause of the on-shell polarization condition. Just to obtain the S-matrix ele­
ment, we need not mix lower-spin fields. 

Next, the on-shell renormalization conditions are imposed on the part of 
the propagator which survives by the application of on-shell polarization. 

Schematically the on-shell renormalization conditions read for all i and 
j (no summation for repeated indices) 

(3·84a) 

(3·84b) 

(i I {K;;S?} = 1 ' (3·84c) 

{S?Ku} Ji)=l, (3·84d) 

where K;1 is the inverse propagator, S? is the diagonalized tree propagator 

and Ji) denotes the on-shell particle state (wave function). The momentum 
variables in Eq. (3 · 84) are understood to be on the mass shell of the cor­
responding state. 

We can interpret the conditions of Eq. (3 · 84) from another point of view: 
Equation (3 · 84a) shows that the matrix K;1 (p2 ) has eigenvalue zero at P2 = ml 
and the state vector (il is the left eigenstate for it. Equation (3·84c) re­
presents normalization of this eigenvector. We will explain this interpretation 
of the on-shell renormalization conditions further in § 3. 3. 2. 

There are many cases where we cannot adopt the on-shell renormalization 
scheme defined above. In a theory with some constraints independent mass 

parameters of all physical particles cannot be supplied by all independent param­
eters in the Lagrangian. In other words, there may be some relations in 

tree mass parameters and these relations may not hold with higher order 
corrections. The so-called pseudo-Goldstone particle, which is massless in the 
tree approximation and becomes massive through higher loop corrections, is 
an example of such a constrained system. In these cases we cannot make 
the tree masses physical ones. One may regard the difference between tree 
and physical masses as counter terms. This procedure, however, destroys the 
loop expansion of the effective action and necessarily breaks the renormaliza­
bility of the theory. We must adopt the scheme in which the particle masses 
(the pole positions of the propagator) get corrected loop by loop. In the 

standard Weinberg-Salam theory the number of the independent bare param­
eters in the Lagrangian is sufficient to supply the full degrees of freedom 

of physical particle masses, and hence we perform the renormalization proce­
dure in the on-shell scheme without any problem. 
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§ 3.3 Two-point functions in the Weinberg-Salam theory 

In the preceding section we have studied the on-shell renormalization 
scheme and proposed the renormalization conditions. In this section we in­

vestigate the structure of two-point functions in the Weinberg-Salam (WS) 
theory. First dealing with the charged gauge boson sector, we see the mani­
festation of the quartet mechanism which assures the unitarity of the physical 
S-matrix and we prove the renormalizability of this sector explicitly. Then 
we proceed to the neutral gauge boson sector, where we prove that the on­

shell renormalization conditions can be imposed consistently with the aid of 
the Ward-Takahashi (WT) identities [Aoki 79]. 

Although in this and the next section we make sure of the validity and 
the consistency of our renormalization scheme, readers who are interested only 
in explicit renormalization calculation may jump over these sections (§§ 3. 3 

and 3. 4). 

3. 3. 1 Charged gauge boson sector 

We begin with the WT identities for the effective action, Eq. (2 ·120) 
derived in § 2. 4, 

(3 ·85) 

where T is defined as before in Eq. (2 ·117) : 

T=T- _[GFd X' ~ s 4 (3· 86) 

and Wp"', ¢>, <{.! (qi) and ca represent (bare) gauge fields, scalars, fermions 
and ghost fields respectively. The corresponding BRS source terms are K~, 

K"" K.p (K¢) and Kc• respectively. 
In the charged boson sector relevant fields are charged gauge bosons 

( w;, W;;-), charged Nambu-Goldstone (NG) bosons (X+, x-) and charged 
ghosts and antighosts (c+, c-, c+, c-). The ghosts decouple from the W-x 
sector because of the ghost number conservation. We define two-point func­

tions as follows: 

(3 ·87) 
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=ippc+-cp2), (3 ·88) 

r xx= FT-------~ l:?r I 
&x+(x)&x-(y) o 

(3 ·89) 

(3· 90) 

where FT denotes Fourier transform defined in Eq. (3 · 7) and the notation 
lo represents that each field is set to its vacuum expectation value respectively. 
In Eq. (3 · 89) we have written the factor P2 explicitly; this factorization will 
be justified in Eq. (3 · 99b). Taking account of the hermiticity of the effective 
action, we obtain the relation: 

(3· 91) 

(3 ·92) 

both sides of which are purely real quantities in CP invariant case. 
In the tree approximation these invariant functions take the values as 

(3 ·93) 

where Mw is the charged gauge boson mass m the tree level. In order to 

write the explicit form of r (P2) we need to fix the gauge. For example, in 
the 't Hooft gauge which will be defined in Eq. (3 ·103), they are given by 

Two-point functions (3 · 87) '"'--' (3 · 90) are expressed m the following 
matrix form: 
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w-. X c 

w+ 
I' A (p") T ,.. + B (P2) L ,.. ip,.c+- (P") 0 0 

x+ -ip,.c-+ (P") p"F(p") 0 0 

c+ 0 0 0 r+- (P") 

c+ 0 0 -r+ CP") 0 

(3·95) 

where the minus signs attached to c-+ and r-+ appear on account of the change 

of order of differentiation. 

In order to obtain the relations among invariant functions imposed by 

gauge in variance we differentiate the WT identity (3 · 85) and set all the 

fields to their vacuum expectation values which are zero in this case. 

Eq. (3·85) : (]2 I 
aw,. +ac- o 

(3·96) 

I = 
;o 

Here use has been made of the ghost number conservation. With the defini­

tion of invariant functions: 

(3 · 98a) 

(3·98b) 

Eqs. (3 · 96) and (3 · 97) are rewritten as 

p,.B(p")J(p") +ip,.c+-(p")I(p") =0, (3·99a) 

-ip"C-+(p")J(p") + p"F(p")I(p") =0. (3·99b) 

Equation (3 · 99b) assures the factorizability in Eq. (3 · 89). The p" factor 

comes from the fact that the X field represents the massless NG mode. From 

the above WT identities an important relation of fc•> components is derived: 
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(3·100) 

The inverse propagator r<2> is obtained by adding the contribution of a 

gauge fixing Lagrangian to r<2>. For the gauge fixing term we take the 

bilinear form without using auxiliary B fields, 

(3 ·101) 

where only the charged gauge boson part is explicitly written and X±· X± de­

notes the convolution integral in the coordinate space as follows: 

(3 ·102) 

which is a local product in the momentum space. The case where X± func­

tion is taken to be 

(3·103) 

1s called the 't Hooft gauge. 

The contribution of the gauge fixing part of the effective action, 

to the two-point functions is calculated as follows: 

r+- =FT (J2FGI" 
GF,u•- ~w+P(x)~w-•(y) 

1 
= --P,.P., 

a 

r -+ . x~+ C 2) GFWpx=tP,. p , 

(3·104) 

(3 ·105) 

(3 ·106) 

(3 ·107) 

(3·108) 

where J(± (P2) is the Fourier transform of X± (x). For simplicity of the 

argument we take X± (P2) so as to cancel the Wx mixing part of the inverse 

propagator: 

(3·109) 

Finally the full inverse propagator in this gauge fixing condition (3·109) 
IS 
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w-
" X 

0 

r<2> =---11---------------1----------

0 F (p2) {p2- aB (p2)} 

(3·110) 

where use has been made of Eq. (3 ·100). By adopting this type of non­

local gauge fixing condition we could make the structure of the two-point 

functions very simple, although in non-local gauges we have various com­

plications in the procedure of quantization. 

How about the ghost propagator in this gauge condition ? First go back 

to the second type of the WT identity (2 ·119) : 

(3 ·111) 

which is deduced from the ghost equation of motion. In our gauge it 1s 

written as 

(3·112) 

where 

With the operation of ~~~c-1 0 we obtain 

(3·113) 

and we have 

where we have used Eqs. (3·99), (3·100) and (3·109). Thus the ghost 

inverse propagator 1s 

c 

0 _ J* (p2) {p2 _ aB (p2)} 
n 2> = --11------------1-----------­

o 

(3·115) 

We easily see the evidence of the quartet mechanism which guarantees 
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the unitarity of physical S-matrix explained in § 2. 2. The propagators of the 

four particles [the scalar component of the gauge boson (LP• part), the NG 

boson (X), the ghost (c) and the antighost (C)] have a pole in a common 

position which is the solution of 

(3-116) 

These quartet particles can appear in the physical subspace of the total Hilbert 

space only in a zero-norm combination and hence cannot be observed. The 

only one physical mode of this sector is the massive vector boson which is 

represented by the TP• mode in the inverse propagator. 

Let us proceed to the renormalization procedure. We introduce renor­

malization constants: 

W" ± (x) =Zi12W_;R (x), 

x± (x) =ZV2XR± (x), 

M~o=M-i + iJM-i, 

iJM-i=iJM-iZs. 

(3-117) 

(3-118) 

(3-119) 

(3 -120) 

From the bilinear terms of the bare Lagrangian we separate out the counter 

terms for r<•>, which will be shown systematically in § 4. 3. The f parts of 

renormalized inverse propagators are written by the use of renormalization 

constants: 

f!.-==Zsi-;".= ZsA (P2) T".+ ZsB (P2) L". 

=AR (P2) T J'U + BR (P2) Ll'.' 

r~R -Zlf2Zlf2F~ -z·p C (p2) w,x= a x w,x= " R , 

fP;x=Zxf-;xx=P2FR(P2). 

(3 -121) 

(3-122) 

(3-123) 

They are also obtained directly by differentiating f with respect to the re­

normalized fields. 

Suppose that the renormalization procedure up to (n -1) -loop is completed. 

We calculate n-loop contribution which is written as 

A.lt' (p2) = Zfn' (M-i- p2) -iJM~"' + .A<"l (p2)' 

B.lt' (P2) = Z~"' M-i- iJM'fi"' + IJ<nJ (p2), 

(3-124) 

(3-125) 

where the suffix (n) denotes the n-loop contribution and the first two terms 

of each equation are n-loop counter terms not yet determined. The n-loop 

momentum integration part is involved in _A<n> and IJ<n>, and all their inner 

divergences are eliminated by the renormalization up to (n -1) -loop and there 

remain only overall divergences. The on-shell renormalization conditions 

derived in Eq. (3 · 83), 
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Af{l (M-i) = 0 , Af{l' (M-i) = 0 , (3·126) 

determine the counter terms: 

(3 ·127) 

The resultant invariant functions Af{l (P2) become a finite function including 
the (P2 - Mw 2) 2 factor. 

To prove the finiteness of Bf{l (P2) whose counter terms are already 
fixed by Eq. (3 ·127), we should note an important relation, 

A(O) =B(O). (3 ·128) 

This relation is obtained from the condition for non-existence of any pole in 
one-particle irreducible Green functions, that is, inverse propagators. This 
condition is always satisfied in perturbation theory. The above relation is 
also required to give rise to the Higgs mechanism: The unphysical modes 
(Bas and xa•) in the vector boson field (W;") are eliminated and the massive 
vector boson asymptotic field is constructed. The relation (3 ·128) holds in 
any order of loop expansion: 

Af{l (0) = Bf{l (0). (3 ·129) 

As is seen in Eq. (3 ·125), the renormalization of B (p2) 1s only to subtract 
P2-independent constant terms. It can be expressed as 

(3·130) 

where we take account of Eq. (3 ·129). Here another point should be noted 
that J'j<n> (P2) includes the factor Mw2 because B (P2 ) is equal to zero in the 
case of unbroken gauge symmetry (Mw = 0). This indicates that J'j<n> (P2 ) has 
only logarithmic divergence and we obtain finite Bf{l (P2) from Eq. (3 ·130). 

The renormalized X propagator in n-loop is expressed as 

(3·131) 

where the first term on the right-hand side is the counter term. The n-loop 

term p<n> (p2 ) has only logarithmic divergence. Therefore Ff{l (P2 ) is made 

finite by adjusting Zx as, for example, 

(3 ·132) 

where the corresponding renormalization condition 1s 

(3 ·133) 

The renormalized mixing part CR (P2 ) 1s related to BR (P2 ) and F R (P2 ) by the 
identity (3 ·100) : 
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(3·134) 

The m1xmg part is automatically finite after the renormalization for B and 
F. We have made all Wx components of f'<2> finite. 

Next we discuss the contribution of gauge fixing term. We define x:_ 
and aR as 

(3·135) 

(3 ·136) 

where aR IS supposed to be finite. The gauge fixing condition (3 ·109) leads 

(3·137) 

The gauge fixing part of the effective action, 

(3 ·138) 

becomes finite functional of renormalized quantities. Thus two-point functions 
of r GF are renormalized to be finite. 

Finally, the ghost inverse propagator is written with the renormalized 

quantities aR and BR: 

(3·139) 

This includes only logarithmic divergence because of the factorization of the 

finite term, { P2 - aRBR (P2)}. Therefore we can make it finite by adjusting 
Zc factor defined by 

(3·140) 

appropriately. 

We have made the pole structure of two-point functions clear and proved 
explicitly the renormalizability in the charged gauge boson sector. 

3. 3. 2 Neutral gauge boson sector 

In this subsection we study the neutral gauge boson sector which includes 
two gauge bosons (Zp and Ap, or, Wp8 and Wp0), two Higgs fields (¢ and 

Xs), two ghosts (c8 and c0) and two antighosts (c8 and c0). We assume CP 
invariance of Lagrangian. In this case the physical Higgs field ¢ decouples 
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completely from other particles. We adopt the following gauge fixing Lag­
rangian, 

(3 ·141) 

where (I)· o~'W/ and Xs · Xs represent convolution integrals similar to Eq. (3 ·102). 
Similar to charged gauge boson case two-point functions obtained from r are 

defined as 

Xs 

wa 
Jl As (P2) T,.. + Ba (P2) L,.. Aao (P2) T,.. + Bao (P2) L,.. ip,.Cax (P2) 

--

wo 
Jl A so (P2) T ,.. + Bso (P2) L ,.. Ao (P2) T,.. + Bo (P2) L,.. ip,.Cox(P2) 

--

Xs -iP.Csx(P2) -iP.Cox(P2) p2Fs (p2) 

(3·142) 

z;3 co 

cs 7ss (P2) 7so (P2) 
trr (J2f' 

(3 ·143) 
oci(Jz;J oc1oci co r os (P2) roo (P2) 

Note that 7so has nothing to do with 7os· Gauge fixing part contribution 

is obtained as follows: 

r (2)_ 
GF-

wa 
Jl 

wo 
Jl 

Xs 

p2 
P2wa(P2)L,.. --L,.. 

as 

P2Wa(P2) L,.. - (asw/(P2) + ~Jp2L,.. 

-iP.Xs(P2) i P ,.asWs (P2) X 3 (P2) 

which is to do with Lll• part in the vector sector. 

Xs 

iP,.Xs (P2) 

- i P ,.aaWs (P2) X a (P2) 

-asX/(P2) 

(3·144) 

By differentiating the WT identity (3 · 85) with respect to various com­

binations of fields, we obtain the following relations among invariant functions 
already defined. Here we represent these identities in the momentum repre­

sentation in a graphical way explained in §§ 2. 4 and 2. 5. 
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-~ Eq (3·85)1 · 3 .-... 3 /r'\ ·· --- 3+ 3 .-...X./\_----3 =0 , (3·145a) ~W!~c3 • o · ~-~ ~-~ 

;(){-03+ ~3 =O' (3·145b) 

----:---:-c~2--::- Eq. (3 · 85) lo : ,...-..... D + ,...-..... D =0 ~·t~c3 ~-·V, ~-'c;)3 (3 ·145c) 

~2 I Eq. (3 · 85) 
0 

: 

~W!~c0 

(3·145d) 

~:;~co Eq.(3·85)1
0

: ;(}{-Go+ ;O;iPv~o =0 , 

where we have used the explicit form of Green functions, 

w~~3 = o 

derived from the BRS transform of Wp0 , 

With the definitions of new invariant functions, 

w3~ ]1'---~i 

Eqs. (3 ·145) are rewritten as follows: 

(3 ·145e) 

(3 ·145f) 

(3 ·146) 

(3 ·147) 

(3·148a) 

(3·148b) 

(3 ·149a) 

(3·149b) 
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CaxGaa+iFaGxa=O, 

BaGao+iCaxGxa+iBao=O, 

BaoGso + iCoxGxo + iBo = 0, 

CaxGso+iFsGxo+iCox=O. 

In these identities five equations are independent of each other: 

BaFa= (Cax) 2 , 

BaBo = (Bao) 2 , 

Gxo = (iGaoBa- Bao) /Cax . 

From the second type of the WT identities (2 ·119), 

r;r r;f r;r r;r 
8 -~-aaw·8 -~-aaXa·-~+-~=0 

I' fJK a I' (JK o fJK r;-s 
I' I' x, c 

(3 ·149c) 

(3·149d) 

(3 ·149e) 

(3 ·149£) 

(3 ·150a) 

(3·150b) 

(3 ·150c) 

(3 ·150d) 

(3 ·150e) 

(3 ·151a) 

(3 ·151b) 

we have the following identities of the ghost inverse propagator with suitable 
operations: 

(3 ·152a) 

__§_Eq.(3·15la)l: ip2Gso+ax'ii5aP2 +aaXaGxo=roa, 
iJc0 ,o 

(3 ·152b) 

__§_Eq.(3·151b)l: O=rao, 
fJc 8 o 

(3 ·152c) 

__§____ Eq. (3 ·151b) I : - P2 =roo. 
(J C0 0 

(3·152d) 

The ghost inverse propagator is expressed as 

i (P2 + aaXaBa/Cax) Gsa 0 
n 2> =-----11----------------1---

i (P2 + asXaBa/Cax) (Gao+ iBso/ Ba) 

+ i P2 (Bao/ Ba- aa'ii5) 
' (3 ·153) 
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where we have replaced Gxa and Gxo by the right-hand side of Eqs. (3 -150d, e). 
This expression will play an important role in the proof of charge universality 
(§ 3. 4). 

We clarify the pole structure of unphysical mode in this sector. In order 
to cancel the mixing terms between vector and scalar in r<z>, 

we choose the following gauge fixing conditions, 

Xs(P2) = -Cax(P2), 

W (P2) =-Cox (P2) /asCax (P2). 

In this gauge r<z> and rc<z> become 

r<2>= 

wa AsTI'.+ (Bs- ~)L~'" AsoTI'.+ (Bao-p2B 80)LI'" fJ 
aaBs 

wo AsoTI'.+ (Bao-p2B 30 )LI'" ( P2Bo P) AoTI'.+ Bo----- L~'" fJ 
asBs aaBa ao 

Xs 0 0 

cs co 

cs i (P2- asBs) Gas 0 r (2)_ 
c -

co (P2- a 8B 8) ( G 30 + i ~:) -p2 

(3 -154) 

(3 ·155a) 

(3 -155b) 

Xs 

0 

0 

(P2- asBs)F a 

(3 -156) 

(3-157) 

where use has been made of Eq. (3 -150). The determinant of the invariant 
functions of L 11• part is 

(3-158) 

and that of the ghost part is 

det r c <2> = P2 (P2 - asBs) Gas . (3 -159) 

We have obtained two zeros in these unphysical modes, that is, one at pZ = 0 
and the other at the root of p2 - a 8B 8 (P2 ) = 0, which we call m 2 • There are 

two quartets in this neutral sector: One quartet at pZ=O consists of cA., cA., 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article-abstract/doi/10.1143/PTPS.73.1/1848359 by guest on 06 January 2019



Chap. 3 On-Shell Renormalization in Electroweak Theory. I 81 

L~. and the longitudinal polarization in r:., and the other one at p2 = m 2 

consists of Cz, Cz, L!v and Xs· 
Next we investigate the on-shell renormalization conditions for A (photon) -Z 

boson system. The renormalized inverse propagator of this sector is defined 

as follows, 

T(2JR=FT (J2T 

' 1 iJRiiJR1 

= (Zlf2) t FT __ iJ~z112 
im iJBm(}Bn nj 

(3 ·160) 

where Ri and Bi represent renormalized and bare fields respectively: 

The matrix Zg2 m Eq. (3 ·160) connects Ri and Bi: 

(3 ·161) 

In the tree approximation the Z!// matrix Is the well-known mixing matrix, 

( 
cos Ow 

ztt2= 

-sin Ow 

sin Ow ) 

cos Ow . 
(3·162) 

The on-shell renormalization conditions are imposed as follows (see Eq. 

(3·83))' 

AHO) =0, 

At' (0) = -1, 

Ai(Mi) =0, 

Ai' (Mi) = -1, 

(3 ·163a) 

(3 ·163b) 

(3 ·164) 

where Al/ (P2) is invariant functions ofT"" part of r~~R parametrized similarly 
in Eq. (3 ·142). There are six conditions while the number of adjustable 

renormalization constants are four of Z// factor and one of iJMz2• Therefore 
in order to satisfy six conditions there must be an identity between invariant 
functions. We first recognize the non-pole conditions in the inverse propagator, 

As(O) =Bs(O), 

Aso (0) = Bso (0), 

Ao(O) =Bo(O), (3 ·165) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article-abstract/doi/10.1143/PTPS.73.1/1848359 by guest on 06 January 2019



82 K-I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta 

which are similar to Eq. (3 ·128). The WT identities (3 ·150b) shows 

Ba(O) Bao (0) 
det =0, (3 ·166) 

Bao (0) Bo(O) 

ana hence, 

Aa(O) Aao (0) 
det =0. (3 ·167) 

Aao(O) Ao(O) 

This relation guarantees the existence of a massless pole in this sector. For 

the renormalized amplitudes the same type of identity is deduced as 

det 

where we have assumed 

A~(O) 

A~(O) 

A~A(O) 

A~(O) 
=0, (3 ·168) 

(3·169) 

Due to the identity (3 ·168) two conditions (3 ·163a) are not independent. 
Consequently the number of independent renormalization conditions is five and 
is equal to the degrees of freedom of counter terms. The existence of mass­
less pole is a direct result of gauge invariance; an unproken gauge invariance 
guarantees the existence of a massless gauge boson. 

Let us comment on the structure of the ~j2 matrix. This matrix was 
once defined as an orthogonal type of matrix in a previous literature [Ross and 
Taylor 73]. As a result it was claimed that the on-shell renormalization con­

ditions could not be satisfied for Z-A mixing sector. We understand that 

Fig. 3. 1. Schematical diagram of the relation between 
renormalized on-shell fields and bare fields. 
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the degrees of freedom of this Z 112 factor were not enough. We allow four 

degrees of freedom to ZW and we can satisfy the complete on-shell renormali­

zation conditions. The circumstance that renormalized on-shell fields are not 
obtained by rotationlike transformation of bare fields is schematically shown 

in Fig. 3. 1. It should be mentioned that angles eA and Bz in Fig. 3. 1 are 
not physical quantities which could be calculated perturbatively. 

Let us investigate details of our renormalization scheme from another 
point of view which we have mentioned in § 3. 2. 3. We denote the matrices 

of the invariant functions of TP• part in Ti~ and Ti~R by Ti1 (P2) and TfJ (P2) 
respectively, 

( A,(p') Aso (P2) ) Ti1 (P2) = 
Aso (P2) Ao(P2) 

' 
( Aii(p~ AiA(p2) 

) T~,(p2) = (3·170) 
AiA(p2) A~(p2) 

The on-shell renormalization conditions (3 ·163) are expressed m terms of 

TfJ (p2)' 

T~1 (0) ( : ) 
1 

= 0 , 

T~1 (Mi) ( ~) 
1 

=0. 

These equations are rewritten as 

Ti1 (0)ZIJ1=0, 

Ti1 (Mi) Z~i2 =0. 

(3·171a) 

(3·171b) 

(3·172a) 

(3·172b) 

We find that the first type of the on-shell renormalization conditions (3 ·163) 

is nothing but the eigenvalue equations of TiJ with zero eigenvalue. Their 
eigenvectors correspond to ~~2 matrix. With this interpretation the second 
type of conditions (3 ·164) may be regarded as normalization conditions for 

eigenvectors. 
The eigenvalue equations are formally solved: 

( Ao(O) 
) =fA ( 

Bo(O) 

) ' Zlfl=fA (3 ·173a) 
-Aso(O) -Bso(O) 

ZIJi=fz ( 
Ao(Ml) ) . (3·173b) 

-Aao(Ml) 
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We determine the normalization factors fA and fz. From the renormalization 
conditions (3 ·164) written in the forms, 

we obtain 

Equations (3 -175) correspond to the following relation in QED: 

Z/12 = { _ Ao' (O)} -1;2 • 

(3-174b) 

(3-175a) 

(3-175b) 

(3 -176) 

In this section we have investigated the structure of two-point functions 
and explicitly proved that the on-shell renormalization conditions defined in 
§ 3. 2 are consistently imposed even m the Z-A mixing sector with the aid 
of the WT identities. 

§ 3. 4 Charge universality 

In this section the electric charge universality is investigated. We mean 
by the electric charge universality that the on-shell coupling constant of the 
photon and a particle is proportional to the bare coupling constant in a matter­

independent way. In a practical case, for example, the absolute value of the 
bare coupling constant of the proton is equal to that of the electron. Hence 

in this case the charge universality means that the proton and the electron 
have the same physical charge which is the on-shell coupling strength to the 
photon. This universality should hold in any model because the agreement 
between the charge of the proton and that of the electron is verified ex­
perimentally with quite good accuracy. 

3. 4. 1 What is the problem ? 

In QED the charge universality is obtained as follows. The Lagrangian 
including gauge fixing terms, 

(3 -177) 

has a global U(1) in variance and leads to the conserved current: 
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The charge defined by 

(3·178) 

(3 ·179) 

(3·180) 

generates a corresponding U(1) transformation of fields </J;0 such that 

(3 ·181) 

From the conservation law (3 ·179) a trivial identity holds: 

(3 ·182) 

With the aid of the equations of motion and the equal time commutators, we 

obtain a Ward-Takahashi (WT) identity in the momentum representation 
[Takahashi 57], 

(3 ·183) 

where ro and s-1 represent the photon proper vertex and the inverse prop­
agator, respectively. This relation is graphically expressed as follows (see 

§ 2. 5): 

(3-184) 

For renormalized amplitudes the WT identity (3 ·183) takes the form, 

(3 ·185) 

With the operation ojok,[k~O,p•~m,•• we obtain the on-shell photon coupling as 
follows [Ward 50] : 

(3 ·186) 

where use has been made of the on-shell renormalization condition for s-1 (P) : 

~s-l(p)l = -1. op on-shell 

(3 ·187) 

The expression (3 ·186) assures the charge universality because the proportion­

ality factor ~12 is independent of i. Thus in QED the charge unive;sality 
holds in a trivial way according to the property that the photon couples to 
the conserved current j" which generates the U(1) gauge transformation. 
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In the W einberg-Salam theory the situation is different, that is, the current 

to which the photon couples is not conserved; 

(3 ·188) 

and it IS not equal to the U(1)QEo generator current J: 

(3 ·189) 

Therefore the proof of the charge universality based on the WT identities is 
non-trivial. Here it should be noted that Eqs. (3 ·188) and (3 ·189) do not 

bring about physical difficulties. Operators 0 1• 2 are expressed in any gauge as 

(3 ·190) 

that is, the BRS transform of appropriate operators 0 1• 2• Such a type of 
operator does not develop the expectation value in a physical state because 
of the physical state condition, 

(2·47) 

In other words, 0 1, 2 are practically equivalent to null operators. 
We comment on the unitary gauge, which is given by the limit in which 

the gauge parameter a goes to infinity in the 't Hooft gauge (3 ·103). In 

this gauge the mass of unphysical quartet (B, X, c, c) is aM and diverges in 
this limit. Following the decoupling argument, the Lagrangian in the unitary 
gauge is simply obtained by neglecting all unphysical fields relevant to the 
broken symmetries. In this gauge 0 1 and 0 2 equal zero due to the local 
U(1)QED invariance of the Lagrangian except for the gauge fixing part for 

the photon. This local invariance does not exist in a usual covariant gauge 
because the gauge fixing terms for W± bosons break it. The proof of the 
charge universality in this gauge is trivial as in QED apart from a little 

modification as follows. With the use of the relation 

·ws[ ·· ] J )p umtary = ,. , 

we have the same WT identity as Eq. (3 ·183), 

T'tk.=q;e0 {S;0- 1 (P) -S/-1 (p')}. 

The renormalized photon vertex is obtained as follows, 

T"A.;k. = ZYlq;eo {S; - 1 (P) - S; -l (p')} 

+ Z¥1 X [bare Z boson vertex] , 

(3: 191a) 

(3 ·191b) 

(3 ·192) 

(3 ·193) 

where .Vi1 and Z¥1 are components of the matrix renormalization constant 
defined in Eq. (4·27). Because of the Z-A mixing the second term in Eq. 
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(3 ·193) appears. The conservation law (3 ·191a) guarantees the following 
identities of two-point functions defined in § 4. 3. 2, 

AA.A (0) = o, AZA. (0) = 0 ' 

which imply (see § 3. 3. 2) 

Z¥1=0. 

(3 ·194) 

(3 ·195) 

Using this property, we have the charge universality from Eq. (3 ·193) : 

(3 ·196) 

As is seen above, the WS theory in the unitary gauge can be regarded as 
the simplest extension of QED to include charged vector bosons W" ± and has 
properties similar to QED as far as the photon sector is concerned, although 
there may exist some complications in the renormalizability in this gauge. 

Here we comment on the relation between the "charge universality"*> and 
the renormalizability. In § 2. 5 we have demonstrated the renormalizability with 

the use of the "charge universality" which is obtained from the WT identities. 
The renormalizability is related only to the divergent part of amplitudes. 
On the other hand, the "charge universality" is concerned with the relations 

among full amplitudes including all finite terms as well as infinite terms. 
Therefore the "charge universality" is sufficient but_ not necessary condition 
for the renormalizability. Even if the symmetry is spontaneously broken, the 
renormalizability holds with the same counter terms as those in symmetric 
theory (see § 2. 5), but the "charge universality" is broken in this case; for 

instance, the W± boson coupling constants are not universal, once higher order 
corrections are taken into a.ccount. 

There are the following three cases for remaining symmetry in spontane-

ously broken gauge theory: 

a) non-Abelian type, 
b) pure U(1) type, 

c) U(1) which includes non-Abelian components of the original theory. 
In Case a) the proof of the "charge universality" holds as shown in § 2.5. 
Case b) essentially corresponds to pure QED and the proof of the "charge 
universality" is trivial as in QED. The actual QED in broken WS theory 

corresponds to Case c), that is, the photon field is the linear combination 
of W"0 (U(1)) and W"8 (SU(2)). In this case there are some difficulties for 
the proof of the charge universality. The inclusion of non-Abelian component 
in the photon causes 0 1, 2=;i=O (see Eqs. (3 ·188) and (3 ·189)). Furthermore 
invariant tensors do not exist because the remaining symmetry is U(1) instead 
of non-Abelian symmetry. Thus the charge universality in the WS theory 

*> We denote the charge universality in a general case which is not restricted to the photon 
coupling by the "charge universality" (with quotation mark). 
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becomes non-trivial. We comment on another type of the breakdown of the 
"charge universality". Consider the case where an original symmetry G is 
broken to leave a symmetry G, X G2 (non-simple). The universal charge g, 
of G, gauge symmetry does not necessarily equal the universal charge g2 of 
G2 • For example, the separating behavior of running coupling constants in 
grand unified theory corresponds to this type of the breakdown of the "charge 
universality". 

In the following, first, we discuss the "charge universality" in the frame­
work of S-matrix theory. Second, we give a concise proof of the charge uni­
versality with the use of the WT identities. Finally, we give an alternative 
straightforward proof with the aid of equations of motion and the physical 
state condition [ Aoki 79]. 

3. 4. 2 S-matrix theoretical approach 

In this subsection we give an S-matrix theoretical proof of the charge 
universality without referring to an explicit form of the Lagrangian. An 
original argument was given by Weinberg where the photon and the graviton 
were treated [Weinberg 64]. Here we generalize it for non-Abelian gauge 
bosons [Aoki 79]. A general theorem treating any massless particle with 
spin j (> 1) is given by Kugo-Uehara, which will be stated later [Kugo and 
Uehara 81]. 

Consider a G invariant theory including massless vector particles which 
belong to the adjoint representation of G, where G is a simple Lie group. 
The S-matrix element with emission of a massless vector boson is written as 

(3 ·197) 

where e* 11 is a polarization vector of the massless vector particle. The 
Lorentz invariance of S requires 

(3 ·198) 

where k 11 is the momentum of the emitted vector boson. This is because in 
a covariant field theory a Lorentz transformation of s* 11 must be accompanied 
by the inhomogeneous term proportional to k11 • This inhomogeneous term is 
the very result coming from masslessness of the particle. The "gauge invari­
ance" of the S-matrix, Eq. (3 ·198), is required by the Lorentz in variance 
[Kugo and Uehara 81]. 

We define the on-shell charge gm of a particle whose representation of 
G is R (m), by referring to the on-shell S-matrix element as follows: 

p'o~' l..·· ~ak 
* k•-+o (Ta ) 2 I' *-" 

]J e.a ~ gm B(m) i'i p CpUiflf', 

p 0 l. 

(3·199) 
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where p<'>, (J<'> and i<'> represent the momentum, the spin and the component 

of the representation of G respectively, TRa is the generator matrix of the 
representation R and a is the component of the emitted vector boson. In 
Eq. (3 ·199) we have omitted a trivial kinematical factor. Invariant ampli­
tudes other than (3 ·199) must vanish in the limit k~O, which is shown 
later. 

Consider M" including im (m = 1.--...-N) particle of R (m) representation. 
In the limit k~O in Eq. (3 ·198), similarly in the usual soft pion technique, 
non-vanishing contributions come from pole terms in M: 

0 I: 
m 

(3·200) 

The intermediate propagator m each graph m Eq. (3 · 200) has a pole as 

1 7Jm 
(Pm + 7Jmk) 2 -M!. r-.J 2Pmk' 

_ { + 1: for outgoing particle, 
7Jm- 1 f · • • 1 - : or Incommg partie e, 

(3·201) 

where Mm is the mass of particle m. This pole cancels the external factor 

k" and we obt~in the identity, 

N 

I:; 7fmgm (Ta(m)) imim'Ti,···im'···iN = 0, 
m.=l 

(3·202) 

where ri, ... jN is the S-matrix element without vector emission: 

(3·203) 

we note here that ri,···iN is proportional to an invariant G tensor and lS in­
variant under an infinitesimal G transformation: 

N 

I:; 7fm (TR(m)) imim'Ti,···im'···iN = 0 • (3·204) 
m=l ' 

By comparing Eq. (3 · 202) with Eq. (3 · 204), we conclude the m independence 
of gm: 

for all m. (3·205) 

This indicates the "charge universality". One can also understand that the 

on-shell coupling has the unique form (3 ·199) because other forms of ampli-
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tudes must break the gauge in variance of the S-matrix (3 · 200). This type 
of argument, however, does not give any information about quartic couplings 
which is also indispensable for the proof of the renormalizability (see Eq. 
(2 -199)). Of course the above S-matrix theoretical approach is not applied 
to unphysical particles. 

If the symmetry group G is not simple but U(1), we obtain 

(3-206) 

(3-207) 

instead of Eqs. (3 · 202) and (3 · 204), where g! is the bare coupling constant 

of particle m. Since these equations hold for any S-matrix element, we may 
conclude 

(3-208) 

also in this U(1) case. In the case where there is some other symmetry 

independent of G, however, we cannot completely deduce the charge univer­

sality (3 · 208). For instance, if the electron number and the muon number 
conserve independently, we cannot conclude the equality of the electron charge 
and muon charge. Furthermore even if there is /L-4er process, we cannot 
deduce the vanishing charge of neutrinos in the case where the fermion 
number conservation holds. 

By treating an emission of a massless particle with spin j> 1, the general 

gauge invariance of the S-matrix is obtained and the existence of the corre­
sponding conserved charge with tensorial rank j -1 is concluded [Kugo and 

Uehara 81]. For example, massless particles with spin 1, 3/2 and 2 (graviton) 

imply scalar charge Q, super charge Q"' and vector charge Q" (energy-momen­
tum P") respectively. These conserved charges are related to the correspond­
ing symmetries in the Lagrangian formalism. The proportionality between 
the charges and the quantum numbers is implied in every case; especially in 
the case of graviton, it means the equality between the gravitational and the 
inertial mass. 

To sum up the S-matrix theoretical argument, the Lorentz invariance of 
the S-matrix element including massless vector is guaranteed by the cancella­
tion among poles existing in the contribution of one particle intermediate 
state, and this cancellation implies the on-shell charge conservation and further, 
the "charge universality". 

3. 4. 3 Proof by the use of the WT identities 

We give a proof of the charge universality in the WS theory with the 
use of the WT identities [Aoki 79]. As the proof is non-trivial and very 

lengthy as mentioned in § 3. 4. 1, we present it in a concise form. We start 
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with the differentiation of the WT identity as follows: 

(]8 I Eq. (2 ·120) 
0 

, 

(Jcp a(Jcpb(J CA 
(3·209) 

where <P and i/i are renormalized fields and tJjtJcA Is defined by 

(} (J (} 
-=x-+ Y-. (3 ·210) 
tJcA 6cs tlco 

The coefficients x and y in Eq. (3 · 210) are determined later. Equation 
(3 · 209) is expressed graphically as 

+ ~ + --e--e; + --e--e; •O ' (3·211) 

where we have assumed for simplicity that ¢ does not mix with the photon 
sector. According to the renormalization of <P and i/J, we introduce the re­
normalized BRS source currents K.p and K¢ satisfying 

(} (J (J (} 

tJK~. • t1C/Ja0 = tJK.p. • (}cpa ' 

(} (} (} (} 

tJKt. t1i/)a0 = tJK~.' tJi/). ' 
(3·212) 

All graphs in (3 · 211) represent those obtained by the differentiation with 
respect to renormalized quantities (</J, i/}, K.p, K¢). 

First, we determine the coefficients x and y so that the sum of the first 
two terms in Eq. (3 · 211) becomes the renormalized physical photon vertex 
in the limit 11---+0: 

~~iyk\l 
v~~· 

By the use of invariant functions defined in § 3. 3. 2, we obtain 

X= -fA {iBo (0) + Bso (0) Gso (0)} /Gsa (0), 

Y = fABso (0), 

(3·213) 

(3·214a) 

(3·214b) 
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where the formal solution of the renormalized photon channel (3 ·173a) is 
used. With the aid of the WT identities (3 ·150), these equations are re­
written as 

X= if.tCox (0) Gxo (0) /Gas (0), 

Y =- if.tCox (0) Gxa (0) /Gas (0). 

From Eqs. (3·215a) and (3·215b) we have 

xGxa(O) + yGxo(O) =0, 

(3·215a) 

(3·215b) 

(3 ·216) 

which represents that the scalar mixing contribution GxA (the third term in 
Eq. (3 · 211)) vanishes in the limit k2~0. With the use of Eq. (3 ·153), we 
have also 

xrss(O) + Yros(O) =0, (3·217) 

which means that cA corresponds to the massless channel of ghosts. In short, 
the renormalized photon channel is obtained by the differentiation with respect 
to the massless channel of ghosts cA. 

The resultant WT identity is 

..__c d<. 2 
I:~+O(k), 
c 

(3·218) 

which resembles that of a symmetric theory (2 ·181). There is, however, a 
difference between them regarding the existence of particle mixing. This is 
the critical point to make the proof very lengthy. With the extensive analysis 
of the structure of on-shell renormalized inverse propagators and other invariant 
functions, one can derive the following relation, 

rgn-shell = ~ .2pjJ 
· cA on-shell 

(3 ·219) 

For other particles than fermions, we obtain the on-shell charge in a similar 
way. For example, for the w+ boson we have 

(3·220) 

We easily generalize the above· results as 

(3·221) 
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which we call the (renormalized) charge graph. 
In order to evaluate the charge graph we proceed to a fourth derivative 

of the WT identity (2 ·120). For fermions, for instance, applying the operation, 

i]4 I 
iJ<f;.,iJ<f;biJW/iJcA ,o 

we have the following identity, 

~.·~·~ 
~ 

+ --v]l- ikll + ctr'(J. ~' 

·~ ·v«P·~ 
·~·~·~·0. 

(3·222) 

(3·223) 

By putting all external lines 'of the above amplitudes on mass-shell, one finds 
Eq. (3 · 223) reduces to 

(3·224) 

which is similar to Eq. (2 ·190). We can generalize Eq. (3 · 224) for the case 
of arbitrary number of external lines to obtain, 

(3·225) 

This is nothing but the on-shell charge conservation law (3 · 206). 
To prove the charge universality, we must extract the U(1)QED quantum 

number qi from the charge graph leaving a matter independent factor. In 
the symmetric theory with simple group, we have obtained the "charge uni­

versality" easily because there exists invariant tensors in that case (see Eqs. 
(2·191) and (3·204)). In the case of pure U(1) symmetry, we can evaluate 
the charge graph directly as follows. The ghost Ca corresponds to the U(1). 
channel and hence it is a free particle, which is related to the well-known 
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fact that QED Lagrangian does not need a ghost field. Thus the charge 
graph is just a constant given by the coefficient of cA term in the BRS trans­
form of the relevant field: 

(3·226) 

The photon in the WS theory corresp'onds to the U(l) symmetry which is 
the combination of the original U(l) and non-Abelian component. The above 
fact obstructs the gauge independent proof of the charge universality. We 
adopt the Landau gauge such as 

3 

..[GF= ~ Baa"'W:. (3·227) 
G=O 

In this gauge some amplitudes are evaluated very easily because of the trans­
versal structure of gauge boson propagators as follows. Consider, for example, 
the Green function Gxa (bare) which is graphically expressed as 

x.V-(J c3' (3·228) 

where the dot represents the BRS transform of Xa· The BRS transform of 
Higgs scalar ¢is obtained by the following replacement in its gauge transform: 
gauge parameters ~ corresponding ghost fields (see (2 · 39)), 

In terms of each component of Higgs field defined m Eq. (2 · 65), the BRS 
transform is given by 

(a=l) 

(a=2) (3·230) 

(a=3) 

where all quantities are bare ones. With the use of Eq. (3 · 230), Gxa is sepa­
rated into two parts: 

(3. 231) 
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In the limit k---'>0 the second term including the gauge coupling with ghost 
fields vanishes. The reason for this is that ghost-gauge coupling constant 

has a factor q' (the ghost momentum), which is contracted with the gauge 
boson propagator in the Landau gauge, 

and vanish m the limit k---'>0. Thus we obtain 

and in a similar way we have 

Gxo (0) = -_!_go' Vo . 
2 

(3·232) 

(3·233) 

(3·234) 

The differentiation with respect to cA is, m this gauge, given by 

__§____ =- ifAvo Cox (O) (go'__§____+ go_j__) 
() CA 2Gaa (0) () Ca ()Co , 

(3·235) 

where use has been made of Eq. (3 · 215). The BRS transform of a field ¢t0 

is expressed as 

(3·236) 

where qt Is the U(1) QED generator: 

qi= (Ia+ Y) (3·237) 
2 i. 

The bare charge graph of ¢/ is easily evaluated m a way similar to the 

evaluation of Gx3 and we obtain 

(3·238) 

where l is the unit matrix in all spin and flavour indices. The renormalized 

charge graph (3 · 221) equals the bare one (3 · 238) because of index-indepen­
dence (l) of Eq. (3 · 238). The proof is now completed with this equation. 

Other expressions of the on-shell charge are obtained, 

i z112 
Gaa (0) aA goqt • (3·239) 

They may be interesting in comparison with that of QED, 

(3·240) 
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3. 4. 4 "Maxwell" equation and charge universality 

We investigate here the "Maxwell" equations, the equations of motion 

of gauge fields, to give another proof for the charge universality. For 
simplicity, gauge fixing terms are taken as 

which preserve the global SU(2) X U(1) symmetry. In this gauge the equa­
tions of motion of w/l a, are 

for a = 1, 2, 3, (3·242) 

(3·243) 

where J,"' (a= 0'"'-'3) are the corresponding generator currents of the SU(2) 

X U(1) global symmetry. On the true vacuum only one unbroken symmetry 
is U (1) QED whose charge is formally written as 

With this combination for the charge, "Maxwell" equations (3 · 242) can be 
rewritten as 

(3·245) 

where we define 

gg' 
(3·246) 

(3·247) 

(3·248) 

Here we should notice both of the formal charges, 

(3 ·249) 

and 

(3·250) 

are conserved and equally generate the U (1) QED transformation, since the 
difference between them is a space integration of total divergence and is 
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replaced by a surface term which does not contribute to commutators with 
local fields. In fact, neither of them is well-defined because of the massless 

one-particle contributions. The unbroken symmetry assures only one well­

defined charge which is a certain combination of Q and N, 

(3 ° 251) 

where ( is a parameter to be determined dynamically so that the massless 

pole cancels out. For instance, in QED this ( parameter is easily evaluated 
to be (1- Z3112) because the massless pole in this case is B field which is 

free. We obtain from Eqs. (3 · 245) and (3 · 251), 

1 ~·F - OJ Q_N --u 1w-e P p• 
1-( 

(3·252) 

This 1/ (1-() factor is important to obtain the correct result in the follow­

ing, although in the usual proof with differentiation of J" (see § 3. 4. 1), 
this factor is irrelevant. 

Sandwiching Eq. (3·252) by physical one-particle states li) and If), we 
have 

(3·253) 

Note that N" does not contribute, 

(fiN,.Ii)=(fl { QB, *} li)=O, (3·254) 

due to the physical state condition: 

(3 ·255) 

We apply f d4xe'k:c to both sides of Eq. (3 · 253) and take the limit k---+0. On 
the left-hand side of Eq. (3 · 253), only the contribution coming from a mass­

less particle in the F". channel, namely, the photon A", survives: 

~
\) f 

k+O 
k)l ~ 

i ~: (3·256) 

It should be noted that a massless scalar particle such as B or X cannot con­

tribute to the F". channel because F". is antisymmetric in /1. and JJ. Thus 
the left-hand side reduces to the on-shell photon coupling up to a constant 
independent of matters i and f. The right-hand side (IJ. = 0) in this limit is 

nothing but the matrix element of the well-defined electromagnetic charge 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article-abstract/doi/10.1143/PTPS.73.1/1848359 by guest on 06 January 2019



98 K-I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta 

operator Q, that is, q/J1i, where qi is the eigen value of the charge eigen 

state li). Thus we have obtained the charge universality in a fairly simple 

way. 

This simplification of the proof is due to the physical state condition 

(3 · 255). Furthermore the proof here does not limit the states I i) and I f) to 

those made out of elementary fields and can be applied to any physical particles 

including bound states. Thus we have got a proof for the equality of the 

electric charges of the proton and the electron, assuming that the proton is a 

bound state of the three quark channel, uud. Here we have seen an example 

to suggest that the canonical operator formalism with equations of motion is 

very useful and powerful to reveal essential structures of gauge theories. 

To confirm that the above result agrees with the former results (3 · 238) 
and (3 · 239) obtained only by using the WT identities, we evaluate the pro­

portionality constant of the on-shell charge to the bare charge. The one­

photon contribution to the F""' C is estimated by the use of the asymptotic 

form of F""' 

(3·257) 

where A"as is the asymptotic field of the physical photon and dots stand for 

other particles such as Z boson. Noting that Eq. (3 · 257) leads to 

we have 

FT(OIT F p..(x) Ap (y) IO) =iC (pi'g"P- p.gp.p) _!_, p2 

= - C (1- ()-I lim (277:) 4?J4 (P1- pi) · e f£ (p1 +pi) P. , 
pf-+pl 

where the state normalization convention is 

(3-258) 

(3-259) 

(3-260) 

The kinematical form (p' +pi)" is implied by the following expression of the 

right-hand side (!1- = 0) in Eq. (3 · 253), 

lim S d 4xeik:c(fle0JoQ(x) li) 
k~o 

=e0qt(Jt£ lim (277:) 4?J4 (P1 - pi) ·2Poi. 
pf-pl 

(3 ·261) 

By comparing Eq. (3 · 259) with (3 · 261), the on-shell charge e1i is represented 

by 

(3-262) 
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The factor c-1 (1-() is evaluated as follows. From the equation of motion 
(3 · 252), this factor is given by the residue of the massless pole of the fol­
lowing Green function, 

(3·263) 

where we have taken into account that J 11 Q has no massless one-particle con­
tribution. The Green function is easily estimated in the Landau gauge (a= 0 
m ...f GF (3 · 241)) and the result is 

- C- 1 (1- () e0 = Z~:fgo' . (3 · 264) 

This relation agrees with Eq. (3 · 239) obtained by the use of the WT 
identities. 
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Chapter 4 

On-Shell Renormalization in Electroweak Theory. II 

In this chapter we summarize the necessary machinery to carry out 
higher-order calculations practically in the framework of the on-shell re­
normalization in the Weinberg-Salam theory. 

§ 4. l Structure of the full Lagrangian 

The basic Lagrangian to start with is given by Eq. (2 · 86) together with 
Eqs. (2·18), (2·36a), (2·36b), (2·66), (2·87) and (2·88). For convemence 
we here present the full form of the Lagrangian once again: 

_[ = _[ G + _[ F + _[ GF + _[ FP + _[ H + _[ M , 

r - 1 FaF''" -LG- -- pv ·a. ' 
4 

(4·1) 

(4·2) 

(4·3) 

(4·4) 

(4·5) 

(4·6) 

(4·7) 

where the definitions of F;., Dii,L, D/b, ([), Li,r and Ri,r are given in Eqs. 
(2 · 20), (2 · 21), (2 · 22), (2 · 37a), (2 · 65), (2 · 81) and (2 · 84) respectively. 
It is understood that all the fields and parameters in this Lagrangian are bare 
quantities. Following the procedure described in § 2. 3, we reexpress the 
fields in the basic Lagrangian in terms of bare physical fields (see Eq. 
(2 · 69)) and give a non vanishing vacuum expectation value to the Higgs 
field. Then we choose the most convenient set of independent bare parameters. 
Introducing renormalization constants, we define renormalized fields and para­
meters and split the Lagrangian into tree parts and counter terms. At this 
stage we fix the gauge fixing term ..[ GF so as to be convenient for the calcu­
lation of higher order corrections. Finally we determine the FP ghost term 
..[ FP by using the BRS transformation. The Feynman rules will be derived 
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Chap. 4 On-Shell Renormalization in Electroweak Theory. IT 101 

m § 4. 2 from the tree Lagrangian and the counter terms will be tabulated 
Ill §4.3. 

The basic Lagrangian ( 4 ·1) reexpressed in terms of physical fields takes 
a lengthy expression which will be given in the following. Here the vacuum 
expectation value v of the Higgs field is introduced as a parameter. We shall 
discuss, in a moment, how v is determined in terms of the other parameters. 
The relations between the original bare fields (W/, x~, X2) and the bare physi­
cal fields ( W_. ±, Z_., AM X±) are given as in § 2. 3 by 

W" ± = ( W" 1 =r= i W/) I .)2 , 

Z"= (gW/-g'W/)1Vg2+g'2, 

A"= (g'W/+gW/)1Vg2+gn, 

x± = Cx1 =r= ix2) I .)2. 

(4·8) 

(4·9) 

(4·10) 

(4·11) 

The Lagrangian in terms of the bare physical fields takes the following 
expression: 

_[ = _[ G + _[ F + _[ H + _[ M + _[ GF + _[ FP , 

_[ = - _!_F+ F-"•- _!_Fz Fz".- _!_p4. FA"• 
G 2 .a• 4 t<• 4 t<• 

(4·12) 

+ V /g ,2(gargPB_gaBgPr)[g{(aaWp+)wr-Za+(aaWp-)ZrW/ 
g +g 

+ (aaZp) W/W8-} 

+ g' {(aa Wp+) w;.-Aa+ (a a Wp -) Ar Wa+ + (aaAp) Wr+wa-}] 

+gg' (2gaPgrB_gargPB_ga8gPr) wa+wp-ArZs] 

+ ~2 (gaPgrB_gargPB) Wa+Wp+w;.-Wa-' 

where F;., F;. and F:. are given by 

F_.';=a" W/-a.Wtt±, etc., 

_[ F =_[~in+ _[~nt , 

_[~in=i?Jn~r/Jn·• (n =i,l) 

_tint=_g_(;;; u+a"1-r5 "· w ++;;; u a"1-r5,f, w -) F V2 'I'I Ii 5 'l'i I' 'l'i ii 2 'I'I I' 

gg' Q- A + v 2 '2 nr/Jnr"rf;,. " g +g 

(4·13) 

(4·14) 

( 4 ·15) 

(4·16) 
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_['~> = ~g2Wp +w-P(2v¢+ ¢¢+ 2x+x- + X3X3) 
4 

(4·18) 

(4·20) 

+ 1 (g2-gn)2 z ZPx+x-+l.(g2+g'2)Z ZP(2v¢+¢¢+x x) 
4 g2 + g'2 p 8 p 3 3 

1 gg'2 . . +- Z w-Px+cx3-ZV-tq\) 
2 -,/g2+g'2 p 

1 929' A w+Px-cx3+iv+i¢) 
2 -Jg2+ g'2 p 

_[' v = jJ.2~)t(f)-;, (t;tt;) 2 

= v (JJ.2- AV2) ¢ + (JJ.2- AV2) x-x+ 

(4·21) 
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+ _!_ (f.J.2 - ); V 2) XsXs + _!_ (f.J.2 - 3); v 2) ¢¢ 
2 2 

-2v); (¢x-x+)- v); (¢xsxs)- v); (¢¢¢) 

-); cx-x-x+x+)-); cx-x+xsxs) -); (¢¢x-x+) 

- _!_;; (XsXsXsXs) - _!_;; (¢¢¢¢) -_!_A (¢¢XsXs), 
4 4 2 

..fM=- J; v?Jn¢n- ~ ?JrUti{Cfi-fr) + Cf£+frh5}¢£·X+ 

- ~ q;iuu{ Cfr- fi) + Cfr+ fi)r5} ¢r x-

(4·22) 

(4·23) 

The independent bare parameters present in the Lagrangian (4·1) are 

g, g', A, /-f.2, ft. and f 1 • These are free parameters and are fixed only by con­

fronting the theory with experiments. For this purpose it is convenient to 

choose, instead of the original parameters, another set of bare parameters cor­

responding to the following physical quantities: the unit of charge (e) and 

the masses of the W boson, Z boson, Higgs boson and fermions (Mw, Mz, 
m.,, mi and m1) • The new bare parameters corresponding to these physical 

quantities will be called the bare physical parameters and may be related to 

the original bare parameters (g, g', A, f.J.\ft,f1 ) through the use of the vacuum 

expectation value v of the Higgs boson. 

The vacuum expectation value v is not an independent parameter but 

should be determined in the theory as a function of g, g', A, /-f.2, fi and f 1 • 

In practice, v is determined to be equal to the minimum point of the effective 

potential of ¢ to each order of perturbative expansion. The parameter v is 

introduced as if it were an independent parameter. The term linear in ¢ in 

the Lagrangian _[ v (Eq. ( 4 · 22)) represents the counter term for the tadpole. 

To each order of perturbation we require that the tadpole term in the effective 

action disappears, i.e., the coefficient of the term linear in ¢ vanishes. For 

later convenience we write 

(4·24) 

Summing up, we introduce the redundant parameter v (or 7') and add the 

condition that "tadpole= 0". The counter term corresponding to this condition 

is nothing but 7'. Allowing v to be an independent parameter, we have seven 

kinds of parameters g, g', v, A, /-f.2, fi and fi> which corresponds six kinds of bare 

physical parameters e, Mw, Mz, m.,, mi, mi> and the tadpole counter term 7'. 
The relation between these two sets of parameters is readily given by Eqs. (2 · 68), 
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(2 · 70), (2 · 7 4), (2 · 89) and ( 4 · 24). Inverted relations for these parameters read 

g=eMz/./Mz2 -Mw2 , 

g'=eMz/Mw, 

v=2Mw./Mi-Mw2/(eMz), 

A e2Mz2 
( 2 eTMz ) 

= 8Mw2 (Mz2 -Mw2) mq,- Mw./Mi-Mw2 ' 

ti=m.//2, 

J;,z= ./'!: m;,z/V , (4·25) 

where we have taken the sign convention sgn e = sgn g = sgn g'. 

Using Eq.(4·25), we can replace all the bare parameters g, g', v, A, 
tl, j; and j 1 in the Lagrangian by the bare physical parameters. For the 

later use in § 4. 2 where the Feynman rule is developed, we tabulate useful 
relations in the following: 

g Mw 
Mz' 

e (2Mw2 - Mz2) 

Mz./Mi-Mw2 ' 

2 A 2 eTMz 
p.- v = 2Mw./Mi-Mw2 ' 

2_ 3AV2_ -m 2+ 3eTMz 
P. - ¢ 2Mw./Mz2 -Mw2 ' 

VA= eMz (m 2_ eTMz ). 
4Mw./Mi-Mw2 ¢ Mw./Mi-Mw2 

(4·26) 

We now define renormalization constants and renormalized quantities in 
such a way that 

¢~R,L= (Z}{,t)n"'r/J~.L, (Qn=Qm) 

Xo± = Z,/f2x± , 

Xso=ZVixs, 

cfio=Z/12¢, 

M'tvo=M.J+tJM.J, 
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m~o=m/+&m/, 

m,.o=m,.+tJm,., 

eo=Ye, (4·27) 

where quantltles with (without) suffix 0 denote bare (renormalized) quant1t1es 
(so far the quantities without suffix 0 have been used to denote the bare one, 
but we follow the above notation henceforth). As already mentioned in §§ 3. 2 
and 3. 3, (Z,1) is a real matrix with independent four components and ZR,L 

are complex matrices. We need not deal with mixing between ifJL and </JR* 
since we assume the fermion number conservation. 

We make loop expansions following our Lagrangian. In zeroth order 
of the loop expansion Z = 1 and tJm = 0. We call the corresponding effective 
Lagrangian the tree Lagrangian. We split the Lagrangian into two parts: 
a part consisting of the zeroth order terms, i.e., the tree part, and a part 
consisting of higher-loop terms, i.e., the counter-term part. We choose the 
gauge fixing term _[ GF so that bilinear terms in the tree part, i.e., inverse 
propagator terms, take the simplest form; in fact, we adopt the following 
form to cancel the mixing terms among W and X (Z and Xs): 

(4·28) 

where a, az and aA are the gauge parameters and, m particular, the case 
with a= az =a A= 1 is called the 't Hooft-Feynman gauge. 

Introducing auxiliary fields B, the Lagrangian ·.£ GF of Eq. ( 4 · 28) may 
be written as 

.£GF=B+(a"W"-+aMwx-) +B-(a"W"+ +aMwx+) 

+Bz(a"Z"+azMzxs) +BAa"A"+aB+B-

(4·29) 

It is convenient to replace the renormalized quant1t1es m Eq.(4·29) by cor­
responding bare ones for the purpose of finding the form of _[ FP: 

_[ GF=Bo+(a"Wo"+aoMwoXo-) +B- (a"Wt"+aoMwoXo+) 

+ B/ (a"Zo" + azoMzoXso) + B/ (a" Ao" + f3MzoXso) 

+terms quadratic in the B 0's, ( 4· 30) 
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where the bare quantities B0 , Q:'0 , a:'zo and (3 are defined by 

,.., - ,..,zt;zz-t;2M /M 
'-"-0-'-"- W X W WO' 

a:'zo = azZ¥i~xl12 Mz/ Mzo , 

f3=azZlfiZxl12Mz/Mzo, (4·31) 

and the last terms in Eq. ( 4 · 30) are not written explicitly since they do not 
affect the FP-ghost terms according to the fact that the BRS transforms of 
the B's vanish. We can now easily find the corresponding FP-ghost Lagrangian 
..[ FP by using Eq. (2 · 41) resulting in 

..[ FP= -c+o~BRS (aPWo;, + aoMwoXo-) -Co -~BRS (aPw:" + aoMwoXo +) 

- c/~BRS (aP Zop + a:'zoMzoXso) - c/~BRS (aP Aop + (3MzoXso) ' ( 4. 32) 

where the rule of the BRS transformation is given in Eqs. (2 · 39) and (3 · 229). 
To find the explicit form of ..[ FP• it is more convenient to reexpress Eqs. 
(2 · 39) and (3 · 229) in terms of the physical fields: 

. ' 
~A - zgg (W + - W- +) + <':\ 4 
U p- - V g 2 + gl2 p C - P C U PC , 

g ../g2+g'2 
~¢;=-2(x+c-+x-c+)- 2 xscz, 

~X± = .!L [ ( v + ¢) c± =f xsc±] ± i x± [ (g2- g'2) cz + 2gg' c4 ] 
2 2vg2+g'2 , 

../g2+g'2 ig 
2 (v+¢)cz- 2 cx+c--x-c+), (4·33) 

where the superfix BRS is neglected for aBRS and we have omitted the suffix 
0 for the bare quantities and the fields cz and c4 are constructed from c3 and 
c0 just like the fields Z and A: 

We finally find 

cz= (gcs-g'co)jvg2+g'2, 

c .... = (g'ca+gco)jvg2+g'2. (4·34) 

(4·35) 
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where 

_fi.?~= -c+(o +aMw2)c--c- CD +aMw2)c+ 

-cz(D + azMz2) cz-cADcA-cA(f3Mz2) cz, ( 4-36) 

0 2 
zg W -[a"c+•CZ-iJPCZ·C+] -ieW -[a"c+•CA- O"CA·c+] 

..jg2+ g'2 I' I' 

+ ig2 z [a"c+-c--a"c--c+]+ieA [a"c+-c--a"c--c+] 
..jg2+ g'2 I' I' 

+ix+[-aMw( -g'2+g2) c--cz-aMwec-cA 
2..Jg2+g'2 

(4· 37) 

The renormalization constants and renormalized fields for the FP ghosts 

are defined by 

- z -z c 0 =c , -A -A 
Co =c (4· 38) 

In Eq. (4·38) we have introduced the renormalization constants only for the 
c's and kept the c's unmodified. This is legitimate because the ghost fields 
appear only in internal loops in Feynman diagrams. The decomposition of 

the Lagrangian _[ GF + ...C FP into the tree part and the counter terms may be 
made in the same way as before. 

Summing up, in this section we have rewritten the original Lagrangian 
in terms of the bare physical quantities and then have decomposed the resulting 
Lagrangian into the tree and counter terms. The procedure may be summariz­

ed as follows, 
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..£ (g, g', J., 11\ fn, ¢, ao) 

= :f (eo, Mwo, Mzo, mq,o, m,o, 1/Jo, ao, [T]) 

=..£treeCe, Mw, Mz, m.p, mn, ¢,a) 

+...Ccounter(e, Mw, Mz, m.p, mn, ¢,a, Y, (JMJ, iJMi, am;, iJmn, Z, [T]), 

(4·39) 

where <{1, a and Z represent generically fields, gauge parameters and field 
renormalization constants respectively. 

For the use in the next section, we finally present the bilinear terms 
_[~~~ in _[tree , i.e., the inverse propagator part, 

_fWee= WI'+ [ (g~'"O -f}l'8") +! 8~'8"+ Mw2g~'"] w.­

+! zl'[ (g~'"O -8~'8") + ~z 8~'8"+Mz2g~'·]z. 

+ ! AI'[ (g~'"O -8~'8") + ~.t 8~'8"}~. 

+x+(- 0 -aMw2)x-+l.¢(- 0 -m.p2)¢+l.xs(- 0 -azMz2)Xs 
2 2 

+ i/ii (ir~'81'- mi)rpi + i/ir(ir~'81'- mr) ¢r 

-c+ (0 + aMw2) c- -c- (0 + aMw2) c+ 

-cz(D +azMz2)cz-cAOcA. (4·40) 

§ 4. 2 Feynman rules 

In this section we present a full list of Feynman rules corresponding to 
the Lagrangian ( 4 ·12). The S-matrix is given in terms of the interaction 
Lagrangian _[ r (x) by 

( 4·· 41) 

where T represents an ordinary time ordering. The S-matrix element Sf, for 
specific initial (i) and final (f) states is related to the transition amplitude 
Tf, through the following equation: 

(4·42) 

By using our Feynman rule which will be given in this section, one directly 
obtains Tft defined in Eq. ( 4 · 42) for the process i~f. 

VVe define the propagators by 
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(4·43) 

where ¢l generically represents all the relevant fields in the following. Pro­

pagators in the Feynman diagram will be denoted by wavy, dashed, full and 
dotted lines for gauge bosons, Higgs particles, fermions and ghosts respectively 
(see § 4. 2. 1). In some cases we put an arrow on the propagator line in 
order to specify the direction of the flow of a certain quantum number: for 
the w+ boson and x+ particle the arrow represents the flow of the positive 
charge, for the fermion that of the fermion number and for the ghost that 
of the ghost number. 

The vertex functions for the interactions of gauge-bosons, fermions, Higgs 
fields and FP ghosts are derived from _[I (note that we do not use i_[ I). 

All the momenta of particles associated with vertices are taken to flow in. 
(The case of the FP-ghost is exceptional. The momentum of the FP ghost 
Is taken to flow along the direction of the ghost number.) 

The loop integration is performed by the rule 

(4·44) 

where- we have in mind the dimensional regularization with D the space-time 
dimension. To the fermion and FP-ghost loops we associate the factor ( -1) 

to account for the anticommutation of fermion and ghost fields. 
It should be stressed here that our Feynman rule is designed to minimize 

the number of times that imaginary unit i appears. Thus an extra factor i 
has been introduced in the definition of .dt1 in Eq. ( 4 · 43) and also the vertices 
are defined through _[I instead of i_[ I· For exampltr, the fermion tree pro­
pagator is 1/ (m- p) with fermion mass m and the photon"fermion vertex is er,. 

Let us explain the notations used in our Feynman rules by taking some 
typical examples. The propagator of the w+ field is defined by 

(4·45) 

The corresponding diagram together with the tree propagator is given at the 
top of the list in § 4. 2. 1. There the arrow on the wavy line represents the 

flow of a positive charge so that w+ is created .at the end point denoted by 
W.- and is annihilated at the end point denoted by W, +. The W- W-Z 
proper vertex function is depicted in the first diagram of § 4. 2. 2 (1). It should 

be noted that the vertex function is defined as an amputated 3- or 4-point 
Green function and has no propagator as external lines. The letter w+ (or 
w-) attached to the vertex diagram shows that the w+ (or w-) particle 

comes in the vertex. The same remark also applies to the gauge 4-point func­
tions as depicted in § 4. 2. 2 (2) . 
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To see the virtue of our Feynman rule we present two examples of the 
calculation. The first example deals with the TV-boson contribution to the 
one-loop self-energy part of Z-bosons, ll!. (q). The diagram to be considered 
IS shown in Fig. 4. 1. 

Fig. 4. 1. W-boson contribution to the one-loop 
self-energy part of Z boson. 

Following our Feynman rule, we have 

X .j~~~W2 {(k+q),eg.a+ (q-2k).ga.e+ (k-2q)ag,e.}, (4·46) 

where we have adopted the Feynman gauge. Obviously we have the least 
number of the i's in Eq.(4·46) compared with the expressions for. ll!.(q) 
in ordinary Feynman rules. Our n;. (q) is normalized by the following per­
turbative relation, 

(4·47) 

where A!. is an unrenormalized full propagator of the Z-boson and J;~ is the 
tree propagator appearing in the Feynman rule § 4. 2. 1. Equation (4·46) 
can be calculated explicitly in a straightforward manner. The result may be 
found in Appendix B. 

The next example is one of the correction diagrams in the one-loop order 
for v"-e scattering. The diagram we consider is shown in Fig. 4. 2. By the 
use of our Feynman rule, we obtain its contribution to the scattering amplitude 

A (P.', P.'; P., P.), 

A (P.', P.'; P., P.) 

S dDk _ ( ') ( eMz2 ) 2 1-rs 1 1-r6 ( ) 
= (2n)Di u. P. 2Mw.JMz2-Mw2 ra-2- k- p. r.e-2-u. P. 

X u.(P.') ( eM~2 2)2ra(1-rs -2Mz2-~w2) 1 
2Mw.JMz -Mw 2 Mz m.-p.-k 

X .e(1-rs 2 Mz2-Mw2) ( ) 1 1 (4 4S) 
r -2-- Mz2 u. p. k2-Mz2 (k-q)2-M:1' . 

where we have adopted the Feynman gauge, and P. and Pe (P.' and P.') are 

Fig. 4. 2. One of the diagrams of the one-loop 
corrections for the process v,e~v.e. 
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initial (final) neutrino and electron momenta respectively with q = P.'- p,. 
Here again we observe that the imaginary unit i appears only once in Eq. 

( 4 · 48). Note that the amplitude A coincides exactly with T 1; defined in Eq. 
( 4 · 42). The loop integral in Eq. ( 4 · 48) can be performed by applying the 
Feynman parametrization. The resulting expression may be found in Appendix 

B. If one takes into account only a few leading terms in powers of 1/ Mz, 
the expression for the amplitude A is further simplified and the Feynman­
parameter integrals are trivially done. The final form for A may be easily 
obtained by using the formula given in Appendix C. 
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4. 2. 1 Propagators 

+ 
X X ... ----~--------

x3 x3 ---------------

--------------

+ k 
~,j 

+ 
c e c 
·-----------<----------4 

+ 
c e c 
·-----------(----------4 

z 
c 

·---------(----------4 

A -A c c 
·-----------(-----------4 

1 [ pv (1 ) k"k" J 
2 • 2 g - -az 2 • 2 

k +te-Mz k +te-azMz 

1 

1 

1 

1 I m+k I 
m-k-is tJ = m 2 -k2-ie tJ 

1 

1 

1 

1 

The arrow on the propagator line represents the direction of the flow of a certain quantum 
number; the charge for W±, x±, the fermion number for ¢, the ghost number for c, t:. The 
symbol EB or 8 beside charged ghost propagators represents the sign of the charge carried 
by the arrow. 
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4. 2. 2 Vertices in _f G 

(1) Gauge-boson three-vertices 

(2) Gauge-boson four-vertices 

All the momenta of particles associated with vertices are taken to flow in. 
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4. 2. 3 Vertices in .£ F 

fw: 
~I~i 

!A• eQ.r. (n~i,l) 
Wn~ 

!za 

"fi~i 

Q,,I represent electromagnetic charges of fields </J<,I in units of e. 
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4. 2. 4 Vertices in ..f H 

(1) Gauge-boson-Higgs three-vertices 

t~ 
- e"" ' x..,..... ...., x3 

p q' 

I+ 
IX ... 
I 

w~ 

ieMz ( ) 
2./Mi-Mw2 p-q a 

eMz ( ) 
21M2 M 2 p-q a 

'\ z- w 

eMwMz 
./Mi-Mw2 gaf3 

.J X..,.., ', cp 
""p q' 

lcp 
I 
I 
I 

z~ 

I + 
lx 

'+' 
I 

w~~ 

eMz8 

Mw./Mz2 -Mw2 gaf3 
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(2) Gauge-boson-Higgs four-vertices 

', //­
X a' 71 X ' / 

~6 

' / 
x-l>ll .,'X-' / 

~ 

-ie2Mz 
2../Mz2 -Mw2 gaiJ 

-e2Mz 
2VMz2 -Mw2 gali 

/ 
/ 

~ 
' / 

"'', )I! + 
"' ' / X 

~6 

' / x~, ....x+ 
' / 

~ 

e2Mz4 

2Mv/(M:1-Mw2) gaP 

. 2M -ze zg 
2Mw ali 

ie2Mz 
2../M:J-Mw2 gali 

-e2Mz 
2../ M:J-Mw2 gali 

e2 (2Mw2-Mz2) 2 

2Mw2 (Mz2 -Mw2) gal! 

e2 (2Mw2 -M:1) 
MwVMz2-Mw2gali 
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(3) Higgs three-vertices 

I 
1¢ 
I 
1 

- ...,.J-., + 
X _...;It: 'F.._.,! 

-em/Mz 

( 4) Higgs four-vertices 

-3em/Mz 
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4.2.5 Vertices in _£ M 

I + 
JX 
'( 
I 

~~i 

I -
JX .,. 
I 

~i~ 
-ieMz 
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4. 2. 6 Vertices in _£ FP 

(1) Gauge-boson-ghost three-vertices 

r - ~-·· --~ 
c-·· '""· z •• p ··.p 

r - e ..... ex 
c ... ~ ·\"".. A 
··p ••. c 

fw+ 

..... : 
-z -~ ·v. -
c •. -p ·· ••. c 

f
w+ 

••••• ex e 
c~--~ ·'""·· c-• p • •. 
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(2) Higgs-ghost three-vertices 

I + 
IX 

'+' 
I 

- ~--·l •. _ 
c ... · ~-.. cz . '• 

I + 
IX 

'+' 
I 
1 e 

/_ .. -- .. z ..... -~ C.>-· ·· ... _c 

I -
IX .,. 
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e . .l. 
+ j.:." ··~ A c......... .. ......... c 

I 
IX3 
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+ ~ ••. l. __ e _ 
c .. · ~--- c .... .. .. 
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I <I> 
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I 

+9 . .l. e 
~_..-1::" --~----':-

-iae(2Mw2 -Mi) 
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iaeMw 

-iaeMwMz 
2vMz2 -Mw2 

-aeMwMz 
2vMz2 -Mw2 

I + 
IX ... 

Ill I .l. 
-- j.:."" '•' A 
c •• • ~--.,c .. . 

I -
IX .,. 
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+ e ). 
- .1::" --~ z 
c ••• •• ·---.c 

I 
IX3 
I 
I 

~ _.l. ® 
_- .~.:.· ·-- + 
c..- ~--•• c .. . 
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... 1._ 
-z • .1.:. ·~. z 
c •• •• • •• _c 

-iaeMw 

iae (2Mw2 - Mz2) 

2VMz2 -Mw2 

-iazeMz2 
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iaeMwMz 
2VMz2 -Mw2 
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§ 4. 3 Renormalization conditions and counter terms 

In this section we tabulate the on-shell renormalization conditions and 

counter terms for the tadpole and for all two-, three- and four-point functions. 

Every counter term is presented at the place where the related renormalization 

condition appears. 

Renormalized n-point functions are coefficients of the renormalized fields 

defined in Eq. ( 4 · 27) in the effective action. They are given by the sum 

of one-particle irreducible Feynman diagrams including the contribution of 

counter terms. In the case of two-point functions they are nothing but the 

inverse propagators. 

As explained in § 4. 1, we split the bare Lagrangian into two parts: 

a part consisting of the zeroth order terms of the loop expansion (the tree 

part) and the remaining part consisting of higher-loop terms (the counter-term 

part). According to this separation, we generate the loop expansion of the 

effective action systematically. At each order of the loop expansion we 

determine the counter terms so that the amplitudes satisfy the renormalization 

conditions. 

This process is schematically shown as follows. Consider a renormalized 

two-point function r,. In the one-loop approximation we have two kinds of 

diagrams for F/1), 

r,<I>= --Q-- + (4·49) 
cCll 

where the second term c(l) on the right-hand side represents the one-loop 

part of the counter terms. we determine c(l) by the renormalization con­

dition for r,. With C(l) thus determined the contribution from counter 

terms cancels out the divergence included in the first term in Eq. ( 4 · 49) and 

we obtain the finite r,(l). In the two-loop approximation there are three 

kinds of diagrams, 

r,<z>= -G- + --r--J- + 

~ c (2) 
(4·50) 

where c<2l is the two-loop part of the counter terms. The inner divergences 

of the first term are cancelled out by the second term and there remains the 

overall divergence. We determine c<2l to satisfy the renormalization condition 

for r, and the third term in Eq. ( 4 ·50) cancels out the above-mentioned 

overall divergence to give finite r,<2l. We proceed to the N-loop approxi­

mation. 
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Tt(N)=~+ .... - ....... 

c<ll 

--C:+ + ............... ' 

+···+ -o--+ (4·51) 
c<Nl 

c<N-ll 

The N-loop part of the counter terms c<Nl is determined by the renormali­
zation condition and it cancels out the overall divergence in the N-loop dia­
grams. In this way we obtain the loop expansion of Tt in which every term 
Is finite. 

In the following tables we first present the renormalized n-point func­
tion and write down the corresponding counter terms explicitly, where the 
N-loop parts of these counter terms should be regarded as the last term in 
Eq. ( 4 ·51) ; then we give the on-shell renormalization conditions and the re­
normalization constants which are determined by these conditions. All the 
renormalization constants except Y are determined by the renormalization con­
ditions for the tadpole and for the two-point functions. The constant Y is de­
termined by the renormalization condition for the photon vertex of any of the 
charged particles. For all other vertices (three- and four-point functions) no 
more independent renormalization conditions and counter terms appear. They 
are already fixed by the foregoing renormalization conditions. The explicit 
expressions for the renormalization constants are given in Appendix E. 

For mixing channels the renormalization conditions are imposed following 
the formulas discussed in detail in §§ 3. 2 and 3. 3. The renormalization con­
ditions for diagonal elements are the same as the usual ones and those for 
off-diagonal elements require that amplitudes vanish at the on-shell momen­
tum of each particle (§ 4. 3. 2 (1) (2)). 

It should be mentioned that no counter terms come out from the gauge 
fixing Lagrangian .£ GF as discussed in § 4. 1. 

In what follows we arrange the tables of renormalization conditions and 
counter terms for amplitudes, from which their tree parts are removed, 
following the order of presentation of Feynman rules in the last section. On 
the next page we presnt abbreviated notations used in the following tables. 
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Notations used in tables of counter terms: 

G =Jl+iJMi 
z Ml' 

G1=Gw/H, 

G2=Gz/H, 

Ga=Gz/Gw, 
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4. 3. 1 Renormalization condition and counter term for tadpole 

4> ----Q =tadpole, 

Renormalization condition 

Tadpole=O 

Counter term 

----K =T. 

Renormalization constant 

T 

4. 3. 2 Renormalization conditions and counter terms for two-point func­
tions (proper self-energies) of physical particles 

(1) Gauge-bosons 

w+ w 
~ =(g,'"- kk!• )[~Mw2 ·Zw+ (Mw2-k2)Zw] 

Renormalization conditions 

Aw(Mw2)=0 } 

Aw' (Mw2) =0. 

+ k,,k. [~Mw2 ·Zw+Mw2 ·Zw] k2 . 

Renormalization constants 

zll~ = (g,..- kk!• )Az(k2) + kk!• Bz(k2), 

z~ = (g,..- \!•) [(Mz2 +~Mz2) (Z¥i) 2 

-k2{ (Z¥i)2+ (Z~)2}] 

+ k,.k. [ (M 2 + {J M 2) (Z1;2) 2] k2 z z ,zz . 

- k2 { (Z¥iZ¥.D + (Z~) (Z1'i)}] 

+ k,.k. [(M2+~M2) (Z1f2Zlf2)] k2 Z Z ZZ ZA • 
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Renormalization conditions Renormalization constants 

Az(Mz2) =0, Az' (Mz2) =0; 

l A'\0) =0, AAI (0) =0; ¢ Z¥i, Z¥1, Z~, Z1'1, tJMz2. 

AZA(Mz2) =0' AZA(O) =0. 

In the A-Z mixing channel there are SIX renormalization conditions for five 

constants. In fact, as discussed in § 3. 3, six conditions are not independent. 

The Ward-Takahashi identity representing the unbroken U(l) symmetry 

guarantees the existence of the massless pole in the A- Z channel. Two 

equations AA(O) =0 and AzA(O) =0 gives an identical condition. This situa­

tion corresponds to that in the QED case: Il'" (k2) = (gP• k2- k"1t) X II (k2). 

(2) Fermions 

i j 

E )( E 
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Renormalization conditions 

i=j: 

l K''(m/)u (m,) =u(m,)Ku(ml) =0, 

""" 1 Ku(m,2)u(mt) =u(m,)Ku(m/) 1 =0· 
tc-m, li-m, ' 

i.e., 

i>j: 

{ 
K'1 (m/)u(m 1)=0, 

u(m,) K'1 (ml) =0; 

i.e., 

! 
Kt''(m/) +m1K/1 (m/) =0, 

K5'1(m/) -m1K5~1 (m/) =0, 

K/1 (ml) + m,K/1 (ml) =0, 

K5'1 (ml) + m,K5~1 (ml) = 0 . 

By these conditions are determined the renormalization constants (ZL112) iJ> 

(ZR112) , 1 (complex non-unitary matrices) and CJm,. We need not impose the 
conditions for i<j since the renormalization conditions with i<j are not in­
dependent of those with i> j. This is because the effective action r is hermite 
due to the hermiticity of the Lagrangian as explained in § 3. 2 explicitly. 

In the case where the CP-invariance is imposed, the condition K 5u (ml) 
= 0 holds automatically and no counter terms are required. 

(3) Higgs particle 

cp cp 

-----)(-----

Renormalization conditions 

Fq,(m/) =0 } 

F/ (mq,2) =0 

Renormalization constants 
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4. 3. 3 Renormalization conditions and counter terms for two-point func­
tions of unphysical particles 

Since the unphysical particles do not appear m external lines, the finite 

parts of their renormalization constants are irrelevant. Hence we may impose 

any renormalization condition for these particles. It is only our task to elimi­

nate divergences caused by the presence of these particles. Practically, it is 

most convenient to adopt the minimal subtraction procedure. 

(1) Nambu-Goldstone particles 

Relevant renormalization 

condition 

Relevant renormalization 

condition 

(2) Faddeev-Popov ghosts 

-- + 

~--~--8-<:·-~- = r -+ (k2), 

-+ 
c 

Renormalization constant Zx· 

Renormalization constant Zxa. 

---<:-----M---- -<:-- - kzz- rvM zc z- Z 1/2Z -1;2 - a-...._ w w a w x • 

Relevant renormalization 

condition 

Renormalization constant Z8• 
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-z c 

cA CA 

·--<:-·-··M·····<:·-· =k2ZAA -azMz2GzZzAZlji(Zxa) - 112• 

Relevant renormalization 

conditions 

Renormalization constants 

Zzz, ZZA, ZAZ, ZAA. 

(3) Two-point functions between physical and unphysical particles 

We have determined all the renormalization constants except the constant 
Y. In terms of these renormalization constants determined already the counter 
terms are specified for the following two-point functions: 

+ x-
wll~~-r.­
,..,....,~ k 

- + 
w~x )l -~-

.... k 

+ -- + 
wll x 
~----
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A X 
1::..--- u.. ___ _] =ik M. ~ Zlf2Zlf2 
~~ p Z'JZ ZA X3 • 

4. 3. 4 Charge renormalization constant Y 

We have exhausted all the renormalization constants and the counter 
terms for the two-point functions. Only one remaining renormalization con­
stant Y can be determined as follows: 

j~y _ ~r'(P, k). 
e~ 

See § 4. 3. 6 on the counter term. 

Renormalization condition Renormalization constant 

y 

We may, in fact, impose the above renormalization condition on any charged 
particle and obtain the same value for the constant Y, since the universality 
of the on-shell charge (coupling constant with the photon) has been proved 
in § 3. 4. 

In the rest of tables we are concerned with the counter terms for the 
three- and four-point functions at least with one loop. In these expressions 
for counter terms, it should be understood that the diagrams in parentheses 
indicate the tree vertices given by the relevant Feynman rules and that their 
tree parts are omitted. 
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4. 3. 5 Counter terms for three- and four-point functions in _[ G 

(1) Gauge-boson three-point functions 

_ 1' ~ YZwZl'l ( - !• ,) + YGtZwZ¥1 ( - !' ) . 
w/ ~w+ w~w w~w+ 

(2) Gauge-boson four-point functions 

+Y'G,Zw(Z'ffi (Zl'.l) (:X) +Y'(G,)'Zw(Z',f.)' (X) . 
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4. 3. 6 Counter terms for three-point functions in ..f F 
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4. 3. 7 Counter terms for three- and four-point functions in ..[ H 

(1) Gauge-boson-Higgs three-point functions 

- .... )( .... 
x ...... ~ '-..,4> C.J~J 

~>JJ 
C.-tJ 
CTJ~J 

(,-)~ ,.) . 
.... ... .... .... .... 

CJ~_J 
c_J_J. 
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(2) Gauge-boson-Higgs four-point functions 

' "' ' "' Cx3l4>', /4>CX3l 

= PG22Ga2Zq,(Z¥i) 2 
(Zxa) 

= Y2G22Ga2Zq,(Z¥1) 2 

(Zxa) 

)( Y2G 2G 2z zlt2zt12 
A z = 2 3 </> ZZ ZA 

/ ~ (Zxa) 

' " + ( ' "-) <x·l~ 

' "-( ' ") rx.J;>(; 

' " + ( ' "-) <x•l~ 

' /-( ' ") <x.J;>(; 
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' " ' / +ll ., -
X ' " X X 

;/~ 

(' ") +"-" /-
x , /'x . 

~ 
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(3) Higgs three-point functions 

( 4) Higgs four-point functions 

xu" 
/ 

/ 

= y2G (G )2(G )-2 z z (1 - YG2T eMz ) 
<t> 2 w <t> <t> G G 2M 'M 2 M 2 

4> w m¢ w'V z- w 
(Zxa) 

= y2G (G )2(G ) -2z2 (1 - YG2T eMz ) 
4> 2 w xa G ... Gw 2M 1M 2 M 2 .,. m</> wv z- w 
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4. 3. 8 Counter terms for three-point functions in _f M 

Fermion-Riggs three-point functions 

<xs l 1 <ll 

I 
I 

( 
I± ) 

- YG -tG Z 112 (Z 112t) G ( (Z 112) 
- W 2 X R IJ mJ ~ L J£ 

(ij) (J) (J I) 
J(j) j (J) 

left 

)( 

~~ 
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4. 3. 9 Counter terms for three-point functions in _fFP 

(1) Gauge-boson-ghost three-point functions 

-+c- • X. z 
~::· •• c .. · . ""··. 
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(2) Higgs-ghost three-point functions 

I x+ I -
I 
I 

-+ X z 
c .• • '•, c 
... c. ~-. 

(X,! I <I> 

I 

I =YG2Za Z,/12 Zw112Zx- 112 

_:'.: X + (Z%2) 
.:.e· ··-~-. 

I<~> 
I 
I 

A .X. c c.·· '•..- Z ( A) .. · ~·s; c 

( 
<x,>I<P ) 

I 
I 

-+ ...l, -c-;.:·· ··~ c+ ...... .. ........... 

( 
lcp ) 
I 
I 
I 

.1. -z ;.:·· ·· z c.... ~·-.c . '• 

The last two counter terms are obtained from the corresponding couplings 
proportional to {3 in _[f]~. (See Eqs. ( 4 · 31) and ( 4 · 37) .) These couplings 

have no tree parts. 
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Chapter 5 

Electroweak Radiative Corrections 
to Leptonic Processes 

In this chapter we treat concrete examples of application of the on-shell 
renormalization procedure which has been explained in the foregoing chapters. 
We will calculate the electroweak radiative corrections of order a to the pure 

leptonic processes: the neutrino (anti-neutrino) -electron scattering, v" (iJ ") e­
--+Viv")e-, the inverse muon decay, v"e- --+f[V., and the muon decay, t[----'?e-v"v •. 
We mention briefly the outline of calculation in our renormalization scheme 
(§ 5. 2) and give the explicit expressions of results in every step of the 

calculation for the above processes (§§ 5. 3 and 5. 4) . 

§ 5. l Leptonic processes and the W einberg-Salam theory 

As we mentioned already on the occasion of setting the Weinberg-Salam 
model (§ 1. 2), the ·comparison of its predictions with various experiments gives 

almost the same values to the parameters of the Weinberg-Salam (WS) theory, 
the Weinberg angle Ow and the coupling constant g (and consequently to the 
masses Mw, Mz of the gauge bosons). The argument was, however, in the 
tree level; then it seems worthwhile to perform the systematic calculation 
of the higher order effects and to examine closely the aspect of the WS theory 

as the renormalizable field theory. This situation reminds us of the quantum 
electrodynamics (QED) in the fourties. In those days the renormalizability 

of QED was found and the investigations of the radiative corrections revealed 

out the abundant contents of the theory. Now we proceed similar calculations 
in the WS theory by making use of the on-shell renormalization procedure 
which we regard as the most natural extension of the renormalization prescrip­
tion in QED. 

In these calculations we will consider only the leptonic processes with 
non-hadronic targets which come out of the purely leptonic currents to avoid 
dynamical complications due to the relevant strong interactions as far as pos­
sible. 

From this point of view the experimentally most feasible and well-defined 
process is the annihilation of e+ e- into z+ z- pair. This process is mediated 

by the photon in the tree level, and the Z boson exchange becomes effective 
in high energy region. The electroweak radiative corrections of order a to 
this process were given in [Passarino and Veltman 79] for p+ !L- pair and 
[Consoli 79] for e+ e- pair. 

Next to the above process the leptonic reactions of our interests are 
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the neutrino (anti-neutrino) -electron scattering 

and 

These processes are all mediated through only the gauge boson exchange in 

the tree level. 

The elastic scattering of the neutrino (anti-neutrino) on the electron is 
caused mainly by the neutral leptonic current which is one of the character­

istics of the WS theory, and these elastic processes were early considered by 
't Hooft as a test of the WS theory ['t Hooft 71a]. The electron-neutrino (anti­
neutrino) -electron scattering is possible even in the usual charged current 
V-A theory (the Feynman-Gell-Mann theory) but with different magnitudes 

of cross sections from those in the WS theory. The observed cross sections 
of v,-e scattering in the reactor experiment were in favor of the WS theory 
[Reines et al. 76]. The muon-neutrino (anti-neutrino) -electron scattering is 
mediated by the neutral leptonic current only and the confirmation of these 

reactions [Hasert et al. 73, see also Mo 82] was the most persuasive evidence 
for the existence of the neutral leptonic current and for the WS theory 
before the advent of the polarized electron experiment [Prescott et al. 78 
and 79]. 

Then we will calculate the electroweak radiative corrections of order a 
to these processes v,.e-~v,.e- and v,e- ~v,.e- as examples of the neutral current 

processes [Salomonson and Ueda 75, Green and Veltman 80, Aoki et al. 81, 
Bardin et al. 82]. For the comparison with observations in the future, it 

may be relevant to calculate the processes for v,.(v,.)-beams which are more 
easily feasible in accelerator experiments. 

In the reactions v,e-~t[JJ, and v,e-~t[v,. take part the charged 

leptonic currents.*> These reactions were discussed at the tree level by 

Jarlskog based on the Feynman-Gell-Mann theory [Jarlskog 70]. She sug­
gested to observe the ratio of the forward and backward cross sections as a 
test of the V-A structure of the charged leptonic current. It was, however, 
only recent years that these reactions were investigated experimentally because 
of their rather high threshold energies which amount to 10.9 Ge V in the 
incident neutrino energy and of the exceedingly low cross sections [Armenise 

*> The corresponding process induced by the muon-anti-neutrino v,.e--'l'JC'il. is possible only 
when one assumes the multiplicative conservation of the leptonic numbers [Feinberg and 
Weinberg 61, see also Derman and Jones 77, Derman 79]. The observation gives the ratio 
of cross sections ll(v,.e--'J>p.-v.)/ll(Vpe--'J>tCv.)<0.09 at 90% confidence level [Jonkeretal. 80]. 
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et al. 79, Jonker et al. 80]. As an example of charged current processes we 
will take up the reaction vile-~11-v.. Once we have the amplitude of this 
process, the amplitude of the muon decay can be easily obtained by making 
use of the crossing relation. In this way we present the electroweak radi­
ative corrections of order a both to the reaction vile-~11-v. [Aoki et al. 81, 
Aoki and Hioki 81, Hioki 82a] and to the muon decay /1- ~e-vllv• [Ross 73, 
Appelquist et al. 72 and 73, Hioki 82a and 82b]. 

§ 5. 2 Scenario of calculation 

When we intend to perform some calculation in the WS theory, we find 
with perplexed eyes that discouragingly great many Feynman diagrams should 
be taken into account in contrast with those in QED. This situation is brought 
about from the structure of the WS theory in which we have many fields to 
be taken into care. This is the case in our calculations. By adopting the 
relevant approximations explained in what follows, we can leave considerable 
numbers of diagrams out of account, but it is still desirable to arrange system­
atically the order of calculations. We give the outline of a plan for this 
purpose in Tables 5. 1 and 5. 2. 

We will carry out the calculations of the electroweak radiative corrections 
to the cross sections of the above-mentioned leptonic processes in the one-loop 
order (O(a)). In these calculations we assume the simplest version of the 
WS theory with three generations of quarks and leptons and with one Higgs 
scalar doublet. The masses of the electron- and muon-neutrino are considered 
as to be zero. For experimentally available energies E, of the incident neutrino 
in the laboratory frame, the squared momentum transfers q2 in such processes 
are negligible in comparison with the square of gauge boson mass M 2 = Mw2 

or Mz2 (the mean value of the squared momentum transfer in our calculation 
is estimated, e.g., to be if= 4~5 (Ge V) 2 at E, = 104 Ge V). This is the case 
for the lepton mass m = m. or mil compared with the gauge boson mass M. 
Then we neglect all the quantities of O(q2jM2) and of O(m/M) in our fol­
lowing calculations. As a result, we may leave out of consideration every 
Feynman diagram with the Higgs-lepton vertex from the beginning, because 
this coupling is proportional to the ratio mj M. The Feynman amplitudes 
associated with our leptonic processes in the one-loop order and the formulas 
on 1/ M expansion of the amplitudes are found in Appendix B and Appendix C, 
respectively. 

In these Feynman amplitudes we encounter inevitably both ultraviolet 
and infrared divergent integrals. In order to arrive at the well-defined cross 
sections we should calculate the divergent integrals by adopting relevant reg­
ularization method and separate out the finite parts of amplitudes. We adopt 
the method of dimensional regularization for the ultraviolet divergent integrals 
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Table 5. 1. A scenario of one-loop calculation (ve--We). 

Numbers of Renormalization Renormali-

Steps What is to be calculated Feynman constants and zation counter terms 

"' 1:: 
.9 
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0 
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» 
bll ... 
Q) 
1:: 
Q) 
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QJ 
rFl 

"' 1:: 
0 ·.o 
'-' 
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0 
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>< 
Q) 

t: 
Q) 
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diagrams to be determined conditions 

1. Two-point functions 

1--1 A~(q'): Z boson self-energy 13 (Fig. 5. 3) tJMz2, Z¥1; Aoz §4. 3. 2 (1) 
part 

1--2 A~4 (q2): ZA transition self- 9(Fig. 5. 4) Z¥1, Z!/l; AozA §4. 3. 2 (1) 
energy part 

1--3 A~(q'): Photon self-energy 9(Fig. 5. 5) Z!/1; Ao" §4. 3. 2 (1) 
part 

1--4 A[ (q'): W boson self-energy 
part (*) 

19 (Fig. 5. 6) tJMw"; Aow §4. 3. 2 (1) 

1--5 .Ei(q): Charged lepton 
self-energy part (*) 

4(Fig. 5. 7) tJm,, ZL1, Za'; .Eo' §4. 3. 2 (2) 

1--6 .E!t (q) : Neutrino self- 3(Fig.5. 7 ZL'; .Eo' 

I 
§4. 3. 2 (2) 

energy part I (2)(3)) 

2. Three-point functions 

2--1 FUa"(p.', p,): eeA vertex 
function (*) 

4(Fig. 5. 8) Y· . r .... Oa §4.3.4 

2--2 ru; (p,', p,): eeZ vertex 
function (*) 

5(Fig. 5. 9) reez Oa §4.3-6 

2--3 r'J{,! (p/, p,) : vvZ vertex 
function 

4(Fig. 5.10) r11vZ oa §4.3.6 

2--4 F'J{1(p/, p,): vvA vertex 
function 

3 (Fig. 5. 11) r'wA Qa §4.3.6 

3. Four-point functions 

I Box diagrams 3(Fig.5.1 No UV- and IR-divergences 
(7) (8) (9)) 

4. Infrared divergences 

Real photon emissions 2 (Fig. 5. 12) 

Soft photon effect 

Hard photon effect 

5. Cross sections Arrangement of the invariant amplitudes 

-7Numerical computation-7do/dt 

['t Hooft and Veltman 72a]. For the infrared divergent integrals we calculate 
them by using both the dimensional regularization method and non-gauge 

invariant conventional method in which the fictitious photon mass ..l. is 
introduced. The infinite constants in the D-dimensional regularization are 
denoted as 

(5·1) 

(5·2) 
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Table 5. 2. A scenario of one-loop calculation (ve~ttv). 

Numbers of Renormalization Renormali-
Steps What is to be calculated Feynman constants and zation counter terms 

1. Two-point functions 

1-1 AR" (q2 ) : Z boson self-energy 
rn part ~ 
0 

·-e 1-2 AR w (q"): W boson self-energy 
Q) part (*) ... ... 

ARu (q2) : ZA transition self-0 1-3 u 
» energy part 
Oil 

1-4 ARA(q"): Photon self-energy ... 
Q) 

~ part 
Q) 

~ 1-5 ZR1 (q) : Charged lepton 
(/) self -energy part (*) 

1-6 ZR'(q) : Neutrino self-
energy part 

2. Three-point functions 
rn 

2-1 FrtaA (p.', p,) : eeA vertex ~ 
0 function (*) .13 
Q) ... 

2-2 Fri.aw(p.',p,): vlW vertex ... 
0 
<.) function (l =e, tt) 
~ 

~ 3. Four-point functions 

> I Box diagrams 

4. Infrared divergences 

Real photon emissions 

Soft photon effect 

Hard photon effect 

5. Cross sections 

diagrams to be determined conditions 

13(Fig. 5. 3) fJMz", Ao" §4. 3. 2 (1) 

19 (Fig. 5. 6) fJMw', Zw; Aow §4. 3. 2 (1) 

9(Fig. 5.4) Z¥1, Z'''· AZ• Ao"A §4. 3. 2 (1) 

9(Fig. 5. 5) Z~l; AoA §4. 3. 2 (1) 

4(Fig. 5. 7) fJmz,ZL1,ZR1 ; .I:c' §4. 3. 2 (2) 

3(Fig. 5. 7 
(2)(3)) 

ZL'; Zc' §4. 3. 2 (2) 

4(Fig. 5. 8) Y; F(j,,A §4.3.4 

5(Fig. 5.13) r·•w oa §4.3.6 

5(Fig.5.2, 
(5) "-(9)) 

No UV-divergence 

(3)~2(Fig .. 5.14) 

Arrangement of invariant amplitudes 

~Numerical computation~dcr / dt 

(5·3) 

for ultraviolet and infrared divergences, respectively, where r is the Euler 
constant and tL is introduced on the dimensional reason. We have added the 
suffix U or I to e as a convention to distinguish ultraviolet and infrared 
divergences. In our following calculations we choose /.L2 = 1 without the loss 
of generality. As for the infrared divergent integrals which appear in our 
one-loop calculations, it can be seen that the .correspondence 

CrR ~ ln( .. F) (5·4) 

between the infinite constants obtained by the dimensional regularization method 
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and those by the conventional method, and that for the finite parts of integrals 

both the methods give the completely same results (see also [Marciano and 

Sir lin 75]) . 

To the one-loop corrections for the v"(v")-e scattering contribute the 
Feynman diagrams of the types shown in Fig. 5. 1, where diagram (1) is 

the tree diagram and the blobs in the other diagrams mean all possible one­

loop corrections after reducing the number of diagrams by the above-mentioned 
approximation. These corrections consist of the self-energy corrections (two­

point functions, Fig. 5. 1 (2) (3)) and the vertex corrections which include 

the three-point functions (Fig. 5. 1 (4) (5) (6)) and the four-point functions 
(Fig. 5. 1 (7) (8) (9)). We must determine the renormalization constants to 

carry out our renormalization program on these functions. For the two-point 

functions the following renormalization constants come to be necessary as one 

can see from § 4. 3. 2 (1) : 

for the Z boson self-energy part (Fig. 5. 1 (2)), 

8Mz", ~li and ~11; 

for the ZA transition self-energy part (Fig. 5. 1 (3)), 

8Mz2 , Z}fi, Z¥1, ~Ji and ~11. 

For the three-point functions we should have more renormalization constants 

m our hand (§ 4. 3. 6) : 

for eeZ vertex function (Fig. 5. 1 ( 4)), *> 

8Mz2, 8Mw2• ~li. ~Ji. zL·. zR· and Y; 

for wZ vertex function (Fig. 5. 1 (5)), 

(1) (2) (3) 

(6) (7) 

(4) (5) 

(8) (9) 

Fig. 5.1. Relevant diagrams of one-loop corrections for the 
processes v.e~v.e and v.e~v.e. 

"'> In the present case, we need only the diagonal part of the renormalization constants of 
leptons (Z}.'') .,. since we do not consider the lepton mixing (we set m, =0). We express 
(Z}.'') u as (Z~) ' 1'. 
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for wA vertex function (Fig. 5. 1 (6)), 

(}Mz2 , (}Mw2 , Z.¥1, Z{. and Y. 

First we determine the renormalization constants (}Mz2 , Z.¥i, Z.¥1, Vii and 

2111 in Steps 1-1'"'"'1-3 of Table 5. 1 by referring to the renormalization 

conditions in § 4. 3. 2 (1). For determining the charge renormalization con­

stant Y from the eeA-vertex we need moreover the renormalization constants 

zL·. zRe and (}Mw2 in addition to those known in the above (§ 4. 3. 4). Then 

we prepare the renormalization constants (}Mw2 and Zw in Step 1-4 (Zw is 

for the later use) and ZL1' ZR1 (l = e, /1) and zL· in Steps 1-5 and 1-6 in 

consideration of the renormalization of the above-mentioned vertex functions. 

Now we can determine the charge renormalization constant Y in Step 2-1 
and obtain all the necessary renormalization constants. The explicit forms 

of renormalization constants are given in Appendix E. In terms of these con­

stants we fix the counter terms for three-point functions in Steps 2-2'"'"'2-4. 
For the four-point functions in Step 3 we have neither ultraviolet nor infrared 

divergences. In this way we arrive at the ultraviolet divergence free amplitude 

for the JJ tz (.ii tz) -e scattering in the one-loop order. 

In Step 4 we calculate the cross section for the real photon emission 

vtz(.iitz)e~vtz(.iitz)er. It should be added to the cross section for the elastic 

scattering to cancel out the infrared divergences which remained in the transi­

tion amplitude. The work that sutns up every part calculated up to this and 

makes the square is left to the computer's care in the final step 5 
(Chapter 6). 

The Feynman diagrams of the types seen in Fig. 5. 2 contribute to the 

electroweak radiative corrections for the reaction vtze- ~/1-Ve in the one-loop 

order, where the first one is the tree diagram. The renormalization constants 

which come to be necessary for our purpose in this case are 

(I) 

(6) (7) (8) (9) 

Fig. 5. 2. Relevant diagrams of one-loop corrections for the 
process vpe~ /lVe (and ll~ev;v,). 
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The procedures which are necessary for determining these constants, i.e., the 
steps above the dotted line in Table 5. 2 are already completed in the calcu­
lation of v-e scattering. Then substantially new jobs are Step 2-2 (Fig. 
5. 2 (3) (4)) and Step 3 (Fig. 5. 2 (5) ""'(9)) only. In the calculation of 
the four-point functions we should take care of the infrared divergence which 
comes out of diagram (7) in Fig. 5. 2. In Step 4 we can neglect the con­
tribution from diagram (2) in Fig. 5. 15 in our approximation and apply the 
foregoing results to this case. 

In what follows we will give the renormalized results in every step of 
our scenano. 

The transition amplitudes for the processes v"e- -w"e- and v"e-~v"e- are 
of the general forms 

(v ,.e IT I v ,.e)= u. (P.') [r" {A (t) - B (t) r5} + C (t) (P.' + P.),. J u.(p.) 
2m. 

Xu. (P.') T ,.(1- T5) u.(P.) (5 · 5a) 

and 

=the same expression as the above except the replacement u.~v .. 

(5·5b) 

respectively, where the transition amplitudes T is defined by Eq. (4·42) and 
we adopt the normalization uu =2m. In terms of these invariant amplitudes 
A, B and C, which are the functions of the squared momentum transfer q2 

or t= (P.'- P.) 2, the cross sections are written as 

+4Re(AC*) {1+ st }]. 
(s-m/) 2 

(5·6) 

where ~=1 for v"e scattering and ~= -1 for v"e scattering. 
Then we must find the well-defined expressions of the invariant amplitudes 

A, B and C. We begin with the determination of the renormalization con­
stants (JMz2 , ~t'i, ~t'l, ~Ji and ~11 which are defined by Eq. (4·27). We 
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Fig. 5. 3. The Z boson self-energy diagrams. 

carry out the calculations in the Feynman gauge. The explicit forms of re­
normalization constants are all given collectively in Appendix E. 

Step 1-1 Z boson self-energy part 
For the blob of diagram (2) in Fig. 5. 1 are thirteen Feynman diagrams 

shown in Fig. 5. 3 where </J stands for all relevant fermions and the last one 
expresses the counter term. By using formulas in Appendix B.l, we obtain 

the transverse part of the renormalized Z boson self-energy ARz (q2) 

12 

ARz(l) = :E Anz(q2) +Acz(l), (5·7) 
n=l 

where Acz (q2) is the counter term corresponding to the last diagram in 

Fig. 5. 3. The terms on the right-hand side are explicitly given by 

12 

:E Anz(l) 
n=l 

e2 [~ Mz'{- 61 q2('fJ/+ 1) + ml} 
32n2Mw2(Mz2-Mw2) • 

-2Mz2(Mz'+2MiMw2-4Mw4) 

- ~ q2(Mz'-2Mz2Mw2-18Mw') Jcuv 
+ 32n2Mw2(~z2-Mw2) [~Mz'{(rJ/+1)lF(mi,mi,l) 

+Mw2(Mz'-4Mz2Mw2+16Mw4)lnMw2 

+_!_Mz'(Mz2ln Mz2 +m/ln m~2) -lOMw'lFo(Mw, Mw, l) 
2 

+ (Mz'-4MiMw2+24Mw')lF(Mw, Mw, l) 

+Mw2(3Mz4 -4Mz2Mv/-16Mw')Fo(Mw, Mw, q2) 
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+Mz4 {2MiFo(mq,, Mz, l) -Mz2F1(mq,, Mz, l) +lF(mq,, M~, l)} 

-mq,2Mz4 F1(Mz, mq,, l)]. (5·8) 

In the one-loop order, the counter term given m § 4. 3. 2 (1) 1s reduced to 

(5·9) 

On the right-hand side of Eq. (5 · 8), I.;i denotes the sum on the species of 

fermions and the sum over the color degrees of freedom must be included. 

The r;/s should be understood as 

1J.,,.,~=(4Mw2 -3Mz2)/Mi, 

'f/u,c,t= (8Mw2-5Mi)/3Mi, 

'f/a,s,b= (4Mw2-Mz2)/3Mz2. 

The functions F,. (n = 0, 1, 2) and F are defined by 

F,.(M1, M 2, l) = Ix"ln{M12 (1-x) +M/x-q2x(1-x)}dx, 

(n =0, 1, 2) 

Their explicit forms are found in Appendix D. 
The renormalization conditions in the one-loop order are 

12 

I.; A,.z(Mi) +IJMz2=0 
n=l 

and 

12 

I.; A!' (Mz2) - 2Z¥i = 0, 
n=l 

(5·10) 

(5·11) 

(5 ·12) 

(5·13) 

from which are determined the renormalization constants IJMi and ~/i, re­

spectively. 

Step 1-2 ZA transition self-energy part 

For diagram (3) in Fig. 5. 1 are nine Feynman diagrams which are 

shown in Fig. 5. 4. We call them the ZA transition self-energy part. The 

contributions to the transverse part from these diagrams are given by 

8 

ARzA(l) = I.; A,.zA(q2) +AczA(l), (5 ·14) 
n=l 
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where 

and 

K-1. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta 

Fig. 5. 4. The transition self-energy diagrams between 
the Z boson and the photon. 

-5F (M M q2) + M}-4Mw2 }] 
o w, w, 6Mw2 

is the counter term. In Eq. (5·15) the (/s are 

and 

C:e,p,<=2(4Mw2-3MJ)/Mw2, 

C:u, c, ,=4 (8Mw2- 5Mz2) /9Mw2 

(5·15) 

(5-16) 

(5·17) 

According to § 4. 3. 2 (1), the renormalization constants ~ii and ~j1 are de­
termined by the conditions 

8 

:E A,.z"(M}) -Mz2Z!/i=O (5 ·18) 
n=l 

and 

8 

:E A,.z"(O) +MJZ¥1=0, (5·19) 
n=l 
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Chap. 5 Electroweak Radiative Corrections to Leptonic Processes 151 

respectively. 

Step 1-3 Photon self-energy part 

Relevant Feynman diagrams in this case are shown m Fig. 5. 5. 

Fig. 5. 5. The photon self-energy diagrams. 

The transverse part of the renormalized photon self-energy ARA (q2) is 
given by 

8 

ARA(l) = :E AnA(l) +AcA(l), (5·20) 
n=l 

where 

+8Mw2 {lnMw2 -Fo(Mw, Mw, q2)} 

+l{- ~ +12F(Mw, Mw, q2) -5Fo(Mw, Mw, q2)}] 

(N: the number of generations. We take N = 3.) (5 · 21) 

and the counter terms 

(5·22) 

It can be seen from Eqs. (5 · 21) and (5 · 22) that one of the renormalization 
conditions ARA (0) = 0 is satisfied automatically, by observing F 0 (Mw, Mw, 0) 
= ln Mw2• This is guaranteed by the remaining U(1) symmetry in the theory. 
The other renormalization condition ARAt (0) = 0 is reduced to 

8 

:E A:' (0) -2Z~1=0, (5·23) 
n=l 

from which is determined the renormalization constant 2?11. As seen in 

Steps 1-1 to 1-3, in the one-loop order we can determine independently every 
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Fig. 5. 6. The W boson self-energy diagrams. 

renormalization constant in the neutral gauge boson sector. Then we go on 

the preparation to determine the charge renormalization constant Y, i.e., on 

the determination of the renormalization constants iJMw2, Zw, ZL1, ZR1 and ZL"· 

Step 1-4 W boson self-energy part 

The transverse part of the renormalized W boson self-energy A'!; (q2) 

(see Fig. 5. 6) is given by 

18 

A'!;(l) = ~ Anw(l) +A~(l). (5. 24) 
n=l 

The renormalization constants iJMw2 and Zw are determined by 

18 

~ Anw(Mw2) +iJMw2=0, (5·25) 
n=l 

18 

~ A!r' (Mw2) -Zw=O, (5·26) 
n=l 

where 

+ e2 [2M2'' IU 12{2 2F(m m 2) 
32 2 (M 2 M 2) z .t...J Ii q I, ;, q 
' 77: z- W (I,i) 
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+ (2Mz4 -5Mz2Mw2 -14Mw4)Fo(Mw, Mz, q2) 

-10Mw2lFo(Mw, Mz, i) 

- (Mz4 +15Mz2Mw2 -16Mw4)Fl(Mw, Mz, i) 

+ (Mi + 20Mw2) q2F (Mw, Mz, q2) 

-2(Mz2 -Mw2) {7Mw2Fo(Mw, A, i) +5lFo(Mw, A, q2) 

-8Mw2Fl(Mw, A, q2) -lOiF(Mw, A, q2)} 

-m/Mz2 {Fo(m4>, Mw, i) -F1(mif>, Mw, i)} 

+Mz2Mw2 {2Fo(mif>, Mw, i) -Fl(mif>, Mw, i)} 

+MiiF(mif>, Mw, q2)]. (5·27) 

where ). is the small photon mass introduced to regularize the infrared diver­
gence, and Uli is the Cabibbo-like mixing matrix. (For the practical calcu­
lation we consider only the Cabibbo angle.) 

Step 1-5 Charged lepton self-energy part 

The relevant Feynman diagrams are shown in Fig. 5. 7. The contribu­
tions of graphs (1) "'"'(3) are 

3 

2: .1:/(q) 
i=l 

e2 1 [{-16mM2(M2-M2) 
- 161!2 8Mw2 (Mz2 -Mw2) 1 z z w 

+Mz2 (5Mz2 -2Mw2)q+3Mz2 (Mz2 -2Mw2)qrs}Cuv 

+8m.(Mi-Mw2) {Mi+4Mw2Fo(m., A, i) 
+2(Mz2 -2Mw2)Fo(m., Mz, i)}l 

- {Mz2 (5Mz2 -2Mw2) 

+ 16Mw2 (Mi-Mw2)Fl(m., A, i) +4Mz2Mw2Fl(O, Mw, i) 

+2(5Mz4 -12MiMw2 +8Mw4)Fl(m., Mz, i)}q 

-Mi{3 (Mz2 -2Mw2) -4Mw2Fl(O, Mw, i) 

+2(3Mz2 -4Mw2)FI(m., Mz, i)}qr.]. 

Fig. 5. 7. The fermion self-energy diagrams. 

(5·28) 
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By using the counter terms 

(5-29) 

renormalization constants ZL1, ZR1 and 1Jm1 are determined from the following 
conditions: 

I/(m/) +m1I/(m 12) =0, 

I~r (m/) = 0 , 

2m 1 {(I/' (m/) + m 1I/' (m/)} +I/ (m/) = 0. 

Here we have expressed the renormalized self-energy as 

Step 1-6 Neutrino self-energy part 

(5· 30) 

(5. 31) 

The relevant diagrams for neutrino self-energy are the same as those in 
Fig 5. 7, but except for graph (1). Renormalized self-energy is 

(5·32) 

where 

_....i:___ Mz2 {(Mz2 +2Mw2)Cuv- (Mz2 +2Mw2) 
16n2 8Mw2 (Mz2 -Mw2) 

-4Mw2F!(m!, Mw, q2) -2Mz2F!(O, Mz, l)}q(1-r5), 

(5. 33) 

ZL" is determined by 

(5. 34) 

Step 2-1 eeA vertex .function 

Using the renormalization constants which have so far been calculated, we 
determine the charge renormalization constants Y through eeA vertex. 

The relevant diagrams are shown in Fig. 5. 8. 

+-A:q-.~·~+ 
e· (1) (2) (3) (4) 

Fig. 5. 8. Relevant diagrams of eeA vertex. 
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3 

reeA (P I p ) = "" r•eeA (P I p ) + reeA Ra e , e ~ na e , e Ca , 
n=l 

where 

n~A(P.', p.) = 1~~2 {F(q2)ra+G(l) (P·:::I)a }, 

F ( 2) _ C 1 2 + 3 1 1 + a 1 + a2 
q - uv- n m. - n------

a 1-a a 

(5·35) 

(5· 36) 

{ 1 1 4 1 l+a C 2 l+a )} X - n 2 n--- ( IR-ln m. )ln---cp(a , (5·36a) 
2 1-a 1-a 1-a 

G(l) =- 1-a2 In l+a. 
a 1-a 

X {[ (5Mi-6Mw2+8 ::::4
) ra+ (3Mz2-10Mv/) rars]Cuv 

- [ ( ~ Mz2-5Mw2+4 z:;) +6Mw2ln Mw2 

+(5M 2 -12M 2 +8 Mw4
) lnM 2]r z W Mi Z a 

In Eq. (5 · 36a), we have used the following function, 

and 

cp(a) =Sp( 1; a) -Sp ( 1; a), 

( a==j - q;-+q:m/) 

l"'l Sp(x)=- -ln(1-t)dt. 
0 t 

(Spence function) 

(5·36b) 

(5·37) 

(5·38) 

(5· 39) 

(5·40) 
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Fig. 5. 9. The eeZ vertex diagrams. 

Some useful formulas on the Spence function are given m Appendix F. 

Step 2-2 eeZ vertex function 

Now we can go on to evdluate the correction for eeZ vertex (Fig. 5. 1 
(4)) with the initial electron momentum Pe and the final one Pe'- Only five 
Feynman diagrams shown in Fig. 5. 9 should be considered on our approxi­
mation. This correction is expressed as 

4 

TR'! (P.', p,) = I:; n': (P.', p,) + T~ , (5. 41) 
i=l 

where T~~z (Pe', p,) are contributions from four diagrams (i = 1, 2, 3, 4) respec­
tively and T1J; is the relevant counter terms. Their explicit forms are given 
as follows: 

X [ (3Mz2 -4Mw2) {F(q2)ra+G(l) (p,~:~e)a} 

+Mi{F5(q2)rars+Gs(l) (P.~-:n~•)ars} J. (5° 42) 

In Eq. (5-42), F(q2) and G(l) are found m Eqs. (5·36a) and (5·36b) 
respectively, 

1+a2{1 ( 4 ) (1+a) 2 (1+a) } --- -ln --2 ln -- -(CrR-1nm,)ln ---¢(a) 
a 2 1-a 1-a 1-a 

(5·42a) 

and 

Gs(l) = 1-a2 {1+2a21n(1+a) -2}. 
a 2 a \1-a 

(5·42b) 
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e3 Mz2 
---

647r2 (Mz2 -Mw2) JMi-Mw2 

x [ -M~4 
3 (-Cuv+l_ +lnMz2)ra{(1+3e) + (3~+e)r5} 

16Mw~ 2 

+ {- Mz2 (-Cuv +l_+ In Mw2) 

2Mw 2 

+Mw( -3Cuv+! +3lnMw2)}ra(1-r5)]. 

(5. 43) 

T'c! = - e Z1'ir a 

x {Y + Mz2-2Mw2 ( t1Mz2- t1Mw2) + Zlf2+Z •} r (1-r) 
2(M 2 M2) Mz2 Mw2 zz La 5 z- w 

(5·44) 

Steps 2-3 and 2-4 vvZ and wA vertex functions 

vvZ- and llliA-vertices which correspond to Figs. 5. 10 and 5. 11 are given 
as follows: 

3 

T'R! (P.', P.) = :E n"f (P.', P.) + TC:, (5. 45) 
i~l 

-e3Mz2 { (Mz2+Mw2) 2+7Mw' C 
= 647r2(Mz2-Mw2) VMz2-Mw2 ·- 4Mw3 uv 

v v 

+-z-i}·(t-·~+ 
v (I) (2) (3) (4) 

+----(}-·~+ 
v (I) (2) (3) 

Fig. 5. 10. The wZ vertex diagrams. Fig. 5.11. The vvA vertex diagrams. 
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+ Mz4 (_!_+ lnM2) + Mi-2Mw2 (l.+lnM 2) 
4Mw3 2 z 2Mw 2 w 

(5·46) 

(5·47) 

2 

T'R~ (P.', P.) = :E n~A (P.', P.) + T'C: , (5·48) 
i=l 

2 aM2 
"' rwA ( I ) _ - e z 
~ ia P. ,P. -96 2(M2 JIA" 2) 
i-1 7r z- .LV.Lw 

(5· 49) 

where l/ Mw2 terms must be maintained in connection with the 1jq2 term in 
the photon propagator. The counter term is 

(5. 50) 

Step 3 Box diagrams 

The four-point functions m our processes come out of the three box dia­
grams in the one-loop calculation (in Fig. 5. 1 (7) (8) (9)). They have 

no ultraviolet divergence and exchange gauge bosons with large masses, so 
that the results are very simple under the approximations we have adopted. 
Referring to Appendix B. 3, we have for the sum of contributions from these 
three diagrams 

A (P.', P.'; P., P.) <7>+<Bl+<9l 

( e2)2 Mz4 --- ~'(1 ) 
= 4n 64Mw4 (Mz2-Mw2) 2 u.r -r. u. 

xu.ri'{(28Mw2-9Mz2)- (15Mz2-20Mw2 + 2~w4)r.}u.. (5·51) 

In this way we have calculated every necessary part of one-loop correc­

tions. Then we can arrive at the cross section for the vtt(vtt)e-Hitt(vtt)e scat­

tering free from ultraviolet divergence through Eq. (5 · 5). 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article-abstract/doi/10.1143/PTPS.73.1/1848359 by guest on 06 January 2019



Chap. 5 Electroweak Radiative Corrections to Leptonic Processes 159 

Step 4 Infrared divergence 

There still remains, however, a job of which we must make in order to 
obtain well-defined cross sections. Our amplitudes calculated in the foregoing 

steps have the infrared singularity and the collinear singularity, too. We 
can get rid of this infrared singularity by calculating cross sections for final 

states with finite energy resolution, that is, for those in which a photon of 
energy k smaller than some maximum energy (J) (a soft photon) is emitted, 
and by adding them to the elastic cross sections (the well-known Kinoshita­
Lee-Nauenberg theorem [Kinoshita 62, Lee and Nauenberg 64] ; see also 
[Nakanishi _58]). In the same way one can regulate the collinear singularity 
by introducing an angular resolution on the direction of outgoing charged 

lepton and by computing transition rates to nearly degenerate states which 
include the .charged lepton and a collinear photon (not necessarily soft) [Ber­

man 58, Kinoshita and Sirlin 59, Tsai 60, 65, Nieuwenhuizen 71, Berends et 
al. 73a and 73b, Byers et al. 79, Green and Veltman 80, Aoki and Hioki 81, 

Hioki 82a, Paschos and Wirbel 82, Berends et al. 82]. (See also [Sterman 
and Weinberg 77] as an example in QCD.) The numerical values of the 
energy resolution and of the angular resolution should be determined depend­

ing on individual experimental apparatus. 

For these purposes we make beforehand the square of the matrix ele­

ment for bremsstrahlung ve~vzr. (For later convenience we deal with the 
neutral and charged current processes together.) The results corresponding 
to Fig. 5. 12, and Fig. 5. 15 (1) and (3) are 

M (ve~vtr) =GBli (P.') rp (1- rs) v (Pv) 

X l(p ') {t(k A) mz+k+ p/ r (~-r) 
z ' m/- (k+ Pz') 2 P 5 

(5. 52) 

where e (k, A) is the polarization vector of photon, 

G _ -e8Mz2 ~ 4Mw2 -3Mi 
B- 16Mw2 (Mz2 -Mw2)' Mz2 

for ve~ver (l=e), (5·53a) 

~=1 

for ve~ p.vr (l = p.). (5·53b) 

(We have neglected the contribution of Fig. 5.15 (2). See the comments 

after Eq. (5 · 64h) .) 
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The process, Ve-4/J.VT, will be used in § 5. 4. After taking a sum over final 

spin states and an average over initial spin states of the charged lepton, 

we have 

_l L_; L_; JMJ2= _ 32G 2[ f1 + f2 fa J 
2 11 °r B (kpz') 2 (kPe) 2 (kpz') (kp.) ' 

fl=m/fo+m/{(1+~) 2 (P.P.) (kp/) + (1-~) 2 (P.P/) (kp.)} 

- (kpz') [ (1 + ~) 2 (P.P.) { (pz' p/) + (kp/)} 

+ c1-n 2 CP.Pv') { CPz' P.) + CkP.)} J, 

f2=m/fo-m/{(1+~) 2 (Pz'P/) (kp.) + (1-~) 2 (Pz'P.) (kp/)} 

+ (kp.) [ (1 + ~) 2 (pz' p/) { (P.P.) - (kP.)} 

+ (1- ~) 2 (pz' P.) { (p.p/) - (kp/)}], 

fs = 2 (pz' Pe) fo 

where 

+ 2 (1 + ~2) { (kp.) (pz' P.) (pz' p/) - (kpz') (PeP.) (p.p/)} 

+ 2 (1- ~2) m 1m. (kp/) (kP.) 

+ (pz' P.) [ (1 + ~) 2 { (kp/) (P.P.) - (kP.) (Pz' P/)} 

+ (1- ~) 2 { (kp.) (P.P/) - (kp/) (pz' P.)}], 

(5·54) 

(5·54a) 

(5·54b) 

(5 · 54c) 

fo = (1 + ~) 2 (pz' p/) (P.P.) + (1- ~) 2 (pz' P.) (P.P/) + (1- ~2) mtme (p/ p.) 

(5·55) 

is of the same form as the spin sum and average of the squared matrix 
element for the tree diagram (Fig. 5. 1 (1)) : 

(5·56) 

First we take the soft photon approximation in Eq. (5 · 28), i.e., we take the 
limit k-40 in the ft's (i = 1, 2, 3) and integrate over the two-body phase 

Fig. 5. 12. Diagrams of a real-photon emission 
in the neutral current processes. 
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space restricted by the maximum photon energy (1). Then only the fo terms 
remain in Eqs. (5 · 54a) "'(5 · 54c) and the cross section of soft photon emission 
1s expressed by the factorized form 

drJsoft= __ e_ _ m! + m. 2 sd3k [ 2 2 
167!3 k0 (kp/) 2 (kp.) 2 

2 (p/ P.) J drJ 
(kp/) (kp.) . 0

' 
(5· 57) 

where drJ0 is the Born cross section derived from Eq. (5 ·56). In the one-loop 
approximation the addition of the soft photon emission cross section is effec­
tively equivalent to adding the finite part Msoft of Eq. (5 ·57) to the amplitude 
(5·4).*> Msoft is given by 

Msoft=CsoftX (tree amplitude), (5·58) 

where 

Csoft =__£__{ s+m12 ln(-s-) + s+m/ln(-s-) 
167!2 s-m/ m/ s-m/ m/ 

2 ( 2 2 ) l 1d 1 1 1 + .J1- a} - m 1 +m. -r; x ..Jr=a n .J , 
o e2a 1-a a 

(5·58a) 

r;= (p/- p.) 2 ' 

s=E/(1-x) +E.x, 

a=_!_{m/(1-x) +m.2x-r;x(1-x)}, 
s2 

in the center of mass frame, and 

C =~[1+__K_ln(Et' + IPt'l) {1-2ln2-ln lp/1 2 
} 

soft 87!2 lp/ I m! m! (E/ + lp/ I) 

_ E/ {7!2
_ 8 (E/-Ip/1)}] 

lp/1- 6 p E/ + IPt'l ' 
(5·58b) 

in the laboratory frame. 
The cross section calculated so far including soft photon emission effect 

is free from UV and IR divergence. However, it is still unrealistic in the 
sense that, in actual experiments, it is difficult to detect an extra photon with 
(1) much smaller than the charged lepton mass. (Soft photon approximation 
is only valid under the condition (l)<f.._m1 in the Lab-frame.) Further, there 
remains theoretical dissatisfaction that the terms which diverge in the limit 
m1~0 still exist in the results (collinear or mass singularity). 

*> In the case where one regulates the soft photon divergence by introducing the fictitious 
photon mass .l, one should replace the photon mass .l in the expression (5·4) by twice 
the maximum photon energy, 2w. 
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In order to eliminate them, we have to add the exact bremsstrahlung 

cross section, 

(5·59) 

where the variables are shown in Fig. 5. 13. Taking this hard photon 

contribution into account, we get the cross section which can directly be 
compared with experiments. Various numerical results are presented in 
the next chapter. 

l(k) 

!(/{) 

Fig. 5.13. Axes and angles used in Eq. (5·59). 

We can calculate the O(a) correction to the charged current processes 

m a way similar to the neutral current processes. As mentioned in § 5. 2, 
we need only to calculate vlW vertex function and box diagrams in Fig. 5. 2. 
We again proceed according to Table 5. 2. 

Step 2-2 vlW vertex function 

The relevant diagrams are in Fig. 5. 14. 

Fig. 5.14. The vlW vertex diagrams (l=e, /1). 

4 

T'!{: (P.', P1) = L; TV,::' (P.', P1) + T"r!:', (l = e or p.) (5·60) 
n=l 
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4 

I; T':{:' (p/, Pz) 
n=l 

e8Mz8 (Mz2+ 10Mw2) C 
1287C2Mw2 (Mz2 -Mw2) .J2(Mi-Mw2) uv 

+ eaMz [5-6ln M 2+ Mw2 
64n2 .J2(Mz2 -Mw2) w (Mz2 -Mw2) 2 

X {5(Mi-Mw2) -6(Mz2 lnMz2-Mw2lnMw2)} 

- Mi(Mi- 2Mw2) (1+2ln M 2)Jr (1-r) (5·61) 
4Mw2 (Mi-Mw2) z a 5 ' 

rvzw _ eMz 
ea - 4.J2(Mi- Mw2) 

x ( ?JMz2- ?JMz2 -?JMw2 +2Y +ZL1 +ZL"+ Zw)ra(1-rs). (5·62) 
Mi Mz2-Mw2 

Step 3 Box diagrams 

The contributions from box diagrams m Fig. 5. 2 except the photon ex­

change graph are collected as 

A (P/, P/; P., P.) (5)+(6)+(8>+<9> 

(5·63) 

The photon exchange box diagram (Fig. 5. 2 (7)) gives, after the Fierz 

transformation, following contribution: 

u"(P/) [A(u)r.(1-rs) +B(u)r.(1+rs) +C(u) (1-r5) (p.). 

+D (u) (1 +rs)] u.(P.) A. u.(P.') r• (1- rs) u.(P.)' (5·64) 

A(u) =G[ m"2+m/-u {2RTln(_B_) +ln (_im"2)ln (m/-m/-u +R) 
R 2,P - u 2m" .j- u 

(5·64a) 

(5-64b) 
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C(u) = 2m,.G{ln(m") + (m/-m/+u)T }. 
u m. 

(5·64c) 

D(u) = 2m.G {1n(m•) + (m/-m/+u)T }. 
u m,. 

(5·64d) 

(5·64e) 

(5. 64£) 

(5·64g) 

(5·64h) 

Infrared divergence is removed by the soft-photon emission m the same way 
as in the case of the neutral current processes except the following point: 
In Fig. 5. 15 graph (2) has no contribution to the infrared divergence and 
gives very small magnitude. We do not take account of it. 

( 1) (2) (3) 

Fig. 5. 15. Diagrams of a real-photon emission in the 
charged current processes. 

Collecting all the parts, we obtain the one-loop corrected amplitudes of 
the form (5 · 63), where all the contributions except the photon exchange 
box diagram are collected into the term A. Then the cross section is written 
as 

drJ 
dt 

2 
---~[/A/ 2 (s-m,.2) (s-m/) +2m,.m.Re(AB*)u 
n(s-m/) 2 

+ (m,.2m/-st)Re A*(m,.C+m.D)]. (5·65) 

So far, we have calculated the amplitude for v"e~11v., but the amplitude 
for 11 decay can be obtained by the same function. 

dE.dcose 
/p./ (m,.2 + m/-2m,.E.) 2 

4n3 (m,.-E.+ Jp.Jcos 0) 4 

X [/A/ 2 {(m,.2+m/)E.+ (m/-m/) /p.Jcos e-2m,.m/} 
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-2m.Re(A*B) (mp-Ee+ Jp.Jcos (}) 2 

+ mPRe{A * (mPC + m.D)} Jp.J 2sin2fJ]. (5· 66) 

Finally, we obtain the complete cross section and decay width by adding the 

hard photon emission effect as done for the neutral current processes. The 

cross section, (J (J!e~IJ.Yr) has been evaluated in Eqs. (5 ·54) and (5 ·59). 

The width r (p.~evvr) can be calculated with slight modification of 

Eq. (5·54) as 

d 3F 1 
------(p.---';evvr) = ErlPellp.-MP .. , 
dE.dE7d cos (J 32(2n) 6mP 

(5·67) 

((J: angle between e and r) 

lp.-= !n{2QPQ.-+gp .. Q2} (Q=PP-p.-k), (5·67a) 

MP .. = -256GB2 [ 1 {mp2+ (kpp)} (p.)P(pp-k) .. 
(kpp)2 

(kpp)\kp.) {2 (PpPe) (p.) P (PP) .. + (PpPe) kP (pp- p.) .. 

+ (kpp) (P.) P (p.) .. - (kp.) (Pp) P (pp) .. } 

(5·67b) 
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Chapter 6 

Order a. Corrections to Physical Quantities 

We have calculated O(a) electroweak radiative corrections to lJ"e 
~lJ"e, j)"e~v"e, lJ"e~IJ.Ye and /}.~elJ"Ve as functions of the renormalized param­
eters e, Mw, Mz, m1 and m"'. Our next step is to determine the values 
of these parameters from experimental data. After the determination of the 
values of the parameters, it becomes possible to give predictions for various 

quantities. 

In this chapter, we go into these studies. At first we consider the relation 
between the higher order effects and predictions for w± and z boson masses 
(§ 6. 1). Next, we study the 0 (a) radiative corrections to the tree cross 
sections (} (Y"e~lJ"e), ·· ·, and decay width T (p.~eY"v.), and present detailed 
numerical results for them (§ 6. 2). 

§ 6. l Higher order effects and W±, Z boson masses 

Recent development of high energy accelerators has made it possible to 
expect that w± and z bosons (and also other heavy particles) will be observed 
in the near future. As for the masses of W± and Z bosons, the values, 
Mw=77 (Ge V) and Mz=88 (Ge V) have been predicted in the tree level 
analyses of low energy experimental data. 

In this section, we consider the improvement for these predictions by 
including the 0 (a) correction. At the first step we summarize the tree level 
analyses. 

According to the general discussion in § 3. 1, we must first choose input 
data in order to determine the values of the parameters Mw and Mz. Usually, 
experimental data on the muon decay rexp and on a ratio of cross sections of 
)) and f) induced neutral current processes (we take here Rexp = (} (v "e~f) "e) 

/ff (Y"e~Y"e)) are used. Then, the tree level values of W± and Z boson 
masses should be determined by 

r<ol (Mw, Mz) = rexp , 

R<Dl(Mw, Mz) =Rexp' (6·1) 

where r<o> and R(O) express the corresponding quantities calculated as functions 

of Mw and Mz at the tree level in the W einberg-Salam theory. The one­
loop analyses are carried out in a similar way: Replace the left-hand side of 
Eq. (6 ·1) by the one-loop corrected quantities rm (Mw, Mz) and Rm (Mw, Mz) 
as 
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r<1> (M M ) = rexp w, z ' 

(6·2) 

However, the traditional analyses on the muon decay are somewhat dif­
ferent from the above line of argument. The quantity which is used in the 

traditional analyses is not r<o> but rfermi. (1 + LIEM). Here rfermi is the follow­
ing muon decay width calculated in the framework of the four-fermion inter­

action, 

r _ F mp. 1- me G 2 5( 8 2) 
fermi- 1927r3 m/ ' (6·3) 

and LIEM is the QED-radiative correction to this interaction (Fig. 6. 1 +soft and 
hard photon emission effects) [Berman 58, Kinoshita and Sirlin 59, Hioki 82a], 

Fig. 6. 1. The electromagnetic correction to the 
four-fermion interaction !J-'?eli'ii. 

(6·4) 

That is, the following equation is used instead of the first equation in Eq. (6·1), 

(6·5) 

Then, the parameters of the W einberg-Salam theory Mw, Mz are determined by 

r<o) (Mw, Mz) = Ttermi ( = rexp. (1- LIEM))' (6·6a) 

(6·6b) 

We can summarize these as follows. There are two steps in the traditional 

analyses in order to determine Mw and Mz at "tree level": First, the para­
meter of the four-fermion inte~action GF is determined, and the parameters 
Mw, Mz are fixed by Eq. (6·6a, b). The well-known values Mw=77(GeV) 
and Mz=SS(GeV) are not the solutions of Eq. (6·1) but of Eq. (6·6). 

(Hereafter we express these solutions as Mw<o> and Mzw>.) Such complicated 
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determinations have been adopted from the historical reason that i) the QED 
radiative corrections to the four-fermion interaction p.~evf) (Fig. 6. 1) had been 
found to be ultraviolet-convergent, and ii) the Weinberg-Salam theory was con­
structed to reproduce this four-fermion interaction effectively in a low-energy 
limit on the charged current sector. Let us call these analyses tree analyses 
here, although they are not "real tree" analyses. 

These predictions (Mw<o>=77 Ge V and Mz<o>=88 Ge V) are improved by 

including the O(a) electroweak corrections. The one-loop condition on the 
muon decay width is 

r<n(Mw, Mz) (=T(O) (Mw, Mz) (1+ LIEW)) =rexp' (6-7) 

where LIEw denotes "electroweak correction". By the use of Eq. (6 · 6a), 

Eq. (6 · 7) is reduced to 

TCWl (M M ) = rcoJ (M col M C0l) 
w, z w ' z ' (6 ·Sa) 

where 

(6-Sb) 

Therefore Llw becomes necessary m the practical calculations.*> We conven­
tionally call Llw "weak" part and LIEM "electromagnetic" or "QED" part respec­
tively in the whole electroweak correction LIEW. 

Next, let us consider R. Strictly speaking, one-loop-corrected R (R0 > (Mw, 

Mz)) depends on the incident v (fJ) energy and consequently the average of 
Rm over v(v) energy spectrum is necessary. Fortunately, however, the energy 

·*> In the Weinberg-Salam theory, it is not possible for the charged current interaction to 
define the QED part properly by selecting some diagrams in Fig. 5. 2. It is a mere con­
vention to call JEll! the QED part of JEw- Actually, however, the QED-corrected renormalized 
amplitude of the four-fermion interaction Mferml (Fig. 6.1 +counter terms) has the following 
simple relation to the amplitude Mbox corresponding to Fig. 5. 2 (7), 

Mfermi=Mbox+t {z•+z•- :n (1 +2ln M#)} Mo . 

Here Mo is the tree amplitude, and Z' is (the finite part of) the photonic correction part 
of Zl given in Appendix E, 

a 
Z'=- 4n(4-3lnm12 +2CIR). 

(It should be noted that this type of definition of the QED part is no longer possible for 
the process, e.g., vd-?pu. For such processes, the photonic correction to the four-fermion 
interaction is not ultraviolet-convergent.) 

On the other hand, it is possible to define the QED part in the electroweak correction 
for v.(v.)e-?v.(v.)e processes by taking the contribution of Fig. 5. 9 (1) +appropriate counter 
terms. 
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dependence of R and the pure QED correction to R are found to be 
negligible. (Concerning the energy dependence of R(l), see ,JR in Table 6. 3. 

The pure QED corrections to O"(V,.e-?JJ,.e) and O"(V,.e-?)),.e) (Fig. 5. 9(1)) are 
non-negligible, but almost equal each other. See Table 6. 2 or 6. 3. Then 
the QED corrections to R become very small.) Therefore, we can take the 

condition on R similar to the case of r at some definite E,. (We take 
E, = 5 Ge V.) That is, by denoting the ratio R including the weak one-loop 
correction as R'W> (Mw, Mz), one-loopcorrected values Mw'1> and Mz(l) are 

obtained as the solutions of the equations 

R(W) (M M) I = R(O) (M (O) M (O)) 
w, z Ev(P)=5GeV W ' z . (6·9) 

Here we can see the advantage of the on-shell renormaliz;;tion scheme. That 
is, renormalized Mw and Mz are always the real part of the poles of the W 
and Z propagators at any order of perturbation. 

The analytical expression of the one-loop radiative correction is very com­
plicated, so solving Eq. (6·9) numerically, we obtain 

Mw<1>:::::::79.17 (GeV), 

Mz<1>:::::::90.54 (GeV). (6 ·10) 

(As for the other parameters, see Eq. (6 ·13) .) These solutions give the 
answer to the question: In what energy region should the search for W± 
and Z bosons be performed? For example, concerning the Z boson search, 
the solutions (6 ·10) imply that a prominent peak will be observed at 
v's=90.5(GeV), not at v's=88(GeV) in e+e- collider (or dimuon invariant 
mass M,.,.=90.5 (Ge V) in hadron-hadron reactions). It may be rather sur­
prising that there appear considerable deviations (2.8% correction to the tree 

prediction). This is due to the large logarithmic terms ""'a ln (M~.z/ (m/ 
or q2)) which exist, e.g., in the charge renormalization constant, Y. It is 

possible to sum up these logarithmic terms by renormalization group equation 
as is well known in perturbative QCD. We will argue this method in 

Chapter 7. 

Several authors have also predicted W± and Z boson masses at one-loop 

level. [Antonelli et al. 80 and 81a, Veltman 80, Aoki et al. 81, Sirlin and 
Marciano 81, Bardin et al. 82, Wheater and Llewellyn Smith 82]. Our 
results are consistent with the others although there are small differences 
which are considered to occur due to the different input parameters, e.g., 
quark masses. 

Finally, let us consider another possibility to predict Mw once Mz is 
experimentally measured. Among the input data used to determine the values 
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of the parameters, Rexp includes a rather large experimental error. Present ex­
perimental uncertainties in Rexp lead to ambiguities at least ,..__, ± (2.5-3.0) 
Ge V in the determination of Mw(o> and Mz(o> (consequently, for Mw(l> and 
Mzm). 

On the other hand, Mzexp is expected to be measured with high accuracy 
(within "'-'0.1% [Davier 79]) in e+ e- collider. Therefore, under such circum­
stances, it is worthwhile using the input data, (assumed) M/xp, instead of 
Rexp. ( [Hioki 82b]. This possibility was also indicated in [Sir lin 80].) The 
use of this new input will improve the prediction for W± boson mass. We 

examine this improvement. 
The one-loop-corrected value Mwu\ and tree value Mw(o>, are derived 

from 

(6·11) 

We present the results in Table 6. 1. We should keep in mind that 
uncertainties in this case are small enough to clarify the higher order effects, 
1Mw(1>- Mw(o>J. 

Table 6.1. Prediction for W± boson mass (in Ge V 
unit) by using Mzexp and r•xp. 

Mzexp MJ•> MJI) 

90.0 79.49 78.49 

91.0 80.71 79.75 

92.0 81.92 80.99 

93.0 83.12 82.22 

94.0 84.31 83.44 

95.0 85.49 84.64 

96.0 86.66 85.64 

§ 6. 2 Order a corrections to cross sections and decay width 

In § 6.1 we have shown that there are rather large corrections for the 
predictions of W± and Z' boson masses. In this section, we study the size 
of the correction to various cross sections and decay width. As mentioned 
in Chapter 1, the W einberg-Salam theory has succeeded in explanation of 
various phenomena by using tree level approximation. Therefore, it is important 
to study how the above success of the W einberg-Salam theory is affected by 
the inclusion of the higher order effects. We deal with the pure QED part 
and the weak part separately in order to clarify the effect of weak part which 

is important for the field theoretical test of the W einberg-Salam theory. 
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As a first step of calculating the radiative correction, the values of the 

renormalized parameters, e, Mw, Mz, mf and m"' have to be fixed. If all the 
values of the masses of W±, Z bosons, fermions and Higgs boson are measured, 
it is quite natural and straightforward to substitute the experimental data Mwexp, 
Mzexp, m/xp and m/xp for the corresponding parameters respectively. Another 
possibility is to use the input data, rexp and Rexp instead of l'vfwexp and M/xp 

as mentioned in § 6. 1. Below we study the radiative correction according 
to the above two cases. 

a) (Mw, Mz) case 

In this case, we can immediately obtain the output (correction). We 
denote the weak radiative corrections as 

LJ = {(J(W) (M exp M exp) _ (J(O) (M exp M exp)} /(J(O) (M, exp M exp) w w,z w,z w,z. 

(6 ·12) 

Here we assume simply Mwexp=77 GeV and Mzexp=88 GeV. The results are 

shown in Table 6. 2. (The results are found to change scarcely even if we 
take the values given in Eq. (6·10) for Mwexp and M/xp.) As for the pure 

QED correction, we have shown there two kinds of corrections Llf.o& and LIEM· 

Ll~t is the correction only with contribution of soft-photon emission, which 

depends on the maximum soft-photon energy, w. LIEM is the correction includ­
ing not only soft-photon effect but also hard-photon contribution. A detailed 
description on these pure QED corrections is seen in [Byers et al. 79, Green 
and Veltman 80, Aoki and Hioki 81, Hioki 82a]. 

In the actual calculation we have used the following values for the para­
meters*> (in Ge V unit for masses) : 

mP=1.057x10-1 , m~=1.782, m,.=ma=m,=0.1, 

sin2 Oc (Cabibbo angle) =0.0562. (6 ·13) 

We have neglected all the other mixings. 

There appear large weak corrections. We, however, notice that these 
large corrections are almost universal and energy independent for all the cross 
sections and the decay width. This fact implies that the most part of these 
effects may be absorbed into the re-normalization of parameters which are 

related to the overall normalization of the cross sections and width, that is, 

*> Concerning the values of m. ..... see [Marciano and Sir lin 81]. 
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Table 6. 2. 0 (a) corrections with input Mwexp and Mzexp to the tree cross sections 
IJ (vfte-»v,e), ···, and decay width F (p-»evp'il.). .dw is the weak correction, 
and .dEM(.d~~') is the pure QED correction with (without) hard-photon 
contribution. .d~'l.{' depends on IJ), the maximum soft-photon energy . 

E, .dw .d~~·(IJ)=1 keV) I .d~~·(IJ)=100keV) I 
0.1(GeV) 14.1(%) -14.2 - 6.0 -1.1 

1 14.1 -25.7 -12.6 -1.4 

5 14.1 -35.2 -18.7 -1.7 

15 14.1 -42.4 -23.6 -1.9 

50 14.1 -51.0 -29.5 -2.0 

100 14.1 -56.2 -33.3 -2.1 

500 14.2 -69.2 -42.8 -2.4 

1000 14.2 -75.2 -47.3 -2.5 

5000 14.2 -89.9 -58.6 -2.8 

10000 14.3 -96.6 -63-8 -2.9 

.dw .d~'IJ:'(IJ)=1keV) I .d~'IJ:'(IJ)=100keV) I 
0.1(GeV) 13.2(%) -14.0 - 5.9 -1.0 

1 13.2 -25.3 -12.4 -1.4 

5 13.2 -34.8 -18.5 -1.6 

15 13.2 -42.0 -23.4 -1.9 

50 13.2 -50.6 -29.3 -2.0 

100 13.2 -55.8 -33.0 -2.1 

500 13.1 -68.8 -42.6 -2.4 

1000 13.1 -74.7 -47.0 -2.5 

5000 13.1 -89.4 -58.3 -2.7 

10000 13.1 -96.1 -63.5 -2.9 

E. .d~~·(IJ)=1keV) I .d~~·(IJ)=100keV) I 

15(GeV) 12. 6(%) -21.7 -12.1 -4.5 

50 12.6 -27.0 -15.7 -2.6 

100 12.6 -30.6 -18.2 -2.4 

500 12.6 -40.8 -25.3 -2.5 

1000 12.6 -45.8 -28.9 -2.6 

5000 12.6 -58.4 -38.1 -2.8 

10000 12.6 -64.2 -42.5 -2.9 

.d~~·(IJ)=1 keV) .d~'IJ:'(IJ)=lOOkeV) 

12. 6(%) -17.9 -9.5 -0.4 
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Mw and Mz. This point has close connection to the calculation using the input 
data rexp and Rexp as will be seen below. 

b) (F, R) case 

When we use the data rexp and Rexp as input, we must first determine 

the values of the parameters, Mw and Mz. This has been done in § 6. 1. 
The results are 

Mw<ol~77 (GeV), 

Mzcol~ss (GeV), 

at tree level, and 

Mw(1)~79.17 (GeV) , 

Mz(1)~90.54 (GeV) , 

at one-loop level. 

Using these· results, we can calculate the radiative correction as 

where Mw;~ and Mil,lz satisfy the equations 

r<W) (Mw(l)' Mz(l)) =reo) (Mw(O)' Mz(O))' 

R<W) (M (1) M (1)) I = R(O) (M (0) M (0)) 
W ' z E,~6GeV W ' z • (6 ·15) 

The magnitudes of these corrections are very important for the test of the 

W einberg-Salam theory because various tree predictions by using the input 
rexp and Rexp are in good agreement with experimental data. If the Weinberg­

Salam theory is the correct theory of electroweak interaction, the radiative 
corrections are expected to be small. We show the results in Table 6. 3. 

In the results, the weak corrections to 11 decay width and R=ff (f) Pe 

-~f)Pe)jff(vPe~vPe) at E,,p=5GeV are exactly zero from the condition, Eq. 
(6 ·15). Concerning the weak correction.s, we have given the numerical re­

sults up to second decimal place to clarify their energy dependence. 

The results show that the absolute values of the weak corrections, l.dwl, 
are smaller than l.dEMI in this case. That is, the large corrections in Table 

6. 2 have been actually absorbed into the shifts .dMw,z = Mw;1i- Mw;~. This 
supports the validity of the tree approximation . 

.JR denotes the weak correction to the ratio R. The fact that the energy 
dependence of .JR is weak shows that the calculations of Mwm and Mzm 
(Eq. (6 · 9)) are not affected severely by the change of the energy where 
Rm is calculated. 

The experimental data of the neutral current processes are usually ex­

pressed in terms of the Weinberg angle. sin28w. We have not used this para-
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meter since it is not a convenient parameter once higher order effects are 

included. However, we can define E-dependent Weinberg angle, sin20w(E) 
according to the tree relation 

R<O) = 16 sin4 Ow- 4 sin2 Ow+ 1 
16 sin4 Ow -12 sin2 Ow+ 3 ' 

as follows: 

16 sin4 Ow(E) -4 sin2 Ow(E) + 1 
16 sin4 Ow (E) - 12 sin2 Ow (E) + 3 · 

Let us express the relation between sin"Ow and sin20w (E) as 

(6 ·16) 

sin2 Ow(E) =sin" Ow X (1 + Asw). (6·17) 

That is, Asw is the weak correction to sin20w. By combining Eq. (6 ·17) with 

Table 6. 3. 0 (a) corrections with input r•xp and R•xp to the tree 
cross sections and the width. d& is the weak correc­
tion to the ratio R~r1(v,_e--7v.e)/r1(v,_e--7v.e). The 
meaning of dEM is the same as those in Table 6. 2. 

E. 

O.l(GeV) 

1 

5 

15 
50 

100 
500 

1000 

5000 

10000 

Eo 

0.1(GeV) 

1 

5 

15 
50 

100 
500 

1000 

5000 

10000 

dw 

0.85(%) 
0.86 
0.86 
0.87 
0.88 
0.89 
0.92 
0.93 
0.97 
0.99 

dw 

o. 88(%) 
0.87 
0.86 
0.86 
0.85 
0.84 
0.81 
0.80 
0.76 
0.74 

JEM JEw(=JEM+Jw) 

-1.1 -0.2 
-1.4 -0.5 
-1.7 -0.8 
-1.9 -1.0 
-2.0 -1.1 
-2.1 -1.2 
-2.4 -1.5 
-2.5 -1.6 
-2.8 -1.8 
-2.9 -1.9 

v,e--7v.e 

dEM dEw(=EM+Jw) 

-1.0 -0.1 
-1.4 -0.5 
-1.6 -0.7 
-1.9 -1.0 
-2.0 -1.1 
-2.1 -1.3 
-2.4 -1.6 
-2.5 -1.7 
-2.7 -1.9 
-2.9 -2.2 

(continued) 
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Ev.(P) .da 

O.l(GeV) 0.03(%) 

1 0.01 

5 0 (input) 

15 -0.01 

50 -0.03 

100 -0.05 

500 -0.11 

1000 -0.13 

5000 -0.21 

10000 -0.25 

v.e~/f."• 

E, .dw .dEM .dEw(=.dEM+.dw) 

15(GeV) 0.00(%) -4.5 -4.5 

50 o.oo -2.6 -2.6 

100 o.oo -2.4 -2.4 

500 0.00 -2.5 -2.5 

1000 0.00 -2.6 -2.6 

5000 o.oo -2.8 -2.8 

10000 -0.01 -2.9 -2.9 

0(%) (input) -0.4 -0.4 

Eq. (6·16), Llsw is explicitly given m terms of LIR as 

Llsw= 
(16 sin4 Ow-4 sin2 Ow+1) (16 sin4 Ow-12 sin2 Ow+3) Ll 

64sin4 0w(2sin2 0w-1) R 

:::::0.54LIR. (6 ·18) 

We can see that the effective Weinberg angle sin20w (E) decreases as energy 

becomes higher. However, the magnitude of Llsw is so small that it will be 
difficult to check this behavior in V-experiments. The effective Weinberg angle 
like this has been studied by many authors who have calculated the electro­
weak correction to the neutral current processes. (See § 7. 1.) 

Finally, concerning the dependence of the above results on unknown para­
meters, mt and m¢, we have examined the change of the results under the 
replacement, mt: 30~100 (GeV) and m¢: 10~100 (GeV). For example, 

LIMw,z and the correction Llw to v"e~v"e at E, = 100 (Ge V) change as follows: 
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JMw= Mw<n- Mw<ol: 2.167 (Ge V) ~2.221 (m 1~ 100) 

~2.224 (m</>~100), 

JMz=Mzm -Mz<0l: 2.535(GeV) ~2.416 (m 1~100) 

~2.634 (m</>~100) , 

0.89(%) ~1.41 (m 1~100) 

~0.82 (m</>~100) 

In conclusion, we have shown that the success of the W einberg-Salam 

theory at tree analyses is not affected by the inclusion of higher order effects. 

Note added in proof: After the submission of this article for publication, the authors were 
informed that i) L. Maiani arrived at the same conclusion on the test of the electroweak higher 
order effects by using the input data, a•xP, r•xp and Mz•xp (L. Maiani, Roma Univ. Preprint 
n304, July 1982), and ii) S. Sarantakos et a!. calculated the electroweak one-loop correction 
to ve scattering and obtained consistent results on the E.M. correction (including hard photon 
contribution) with the present ones (S. Sarantokos, A. Sirlin and W. ]. Marciano, Preprint 
October 1982). The authors are grateful to Professor L. Maiani and Professor A. Sir lin for 
their information. 
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Chapter 7 

Brief Survey of Studies 
on Electroweak Radiative Corrections 

In Chapters 5 and 6 we have studied electroweak higher order effects 

m purely leptonic weak processes. The study of such effects is, in fact, im­
portant as a precise test of the Weinberg-Salam theory. Similar studies have 
also been performed by other authors and the results are presented in a 

variety of renormalization schemes. In this chapter we summarize the present 
status of these studies in order to understand the interrelation among them. 

We classify these studies on electroweak radiative corrections into two 

categories: (1) studies based on conventional perturbation in powers of a 

fixed coupling constant and (2) studies based on leading-log approximation in 
the renormalization group method. We shall, in the following, discuss these 

two approaches separately. 

§ 7. 1 Conventional perturbation 

The leptonic processes which have been studied with higher order correc­

tions in the conventional perturbation are listed as follows: 

vJJe-HIJJe and liJJe~liJJe [Salomonson and Ueda 75, Veltman 80, Antonelli 
et al. 80, Green and Veltman 80, Aoki et al. 80, 
Aoki et al. 81, Antonelli et al. 81a, Bardin et al. 

82] 

e+e-~e+e­

e+e-~/1.+ !.C 

e+e-~w+w-

w- ~eli. 

z~Jf 

[Aoki et al. 81, Bardin et al. 82] 

[Marciano and Sirlin 80, Sakakibara 81, Llewellyn Smith 

and Wheater 81, Wheater and Llewellyn Smith 82] 

[Sirlin and Marciano 81, Paschos and Wirbel 82] 
[Llewellyn Smith and Wheater 81, Wheater and Llewel­
lyn Smith 82] 
[Consoli 79] 

[Passarino and Veltman 79] 
[Lemoine and Veltman 80, Phillippe 82] 
[Ross 73, Appelquist et al. 72 and 73, Bardin et al. 82, 
Hioki 82b] 
[Inoue et al. 80] 
[Antonelli et al. 81b] 

H (Higgs boson) ~r+r-, w+w-, ZZ [Fleischer and Jegerlehner 81] 

In these calculations diverse renormalization schemes are adopted and various 
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choices of the set of independent parameters are made. Such differences in 
the calculational procedure, however, do not lead to essentially different physical 
predictions. In comparing the results of the calculations, the following two 
points should be clearly distinguished and carefully examined: (1) choice of 
independent parameters and (2) choice of input data needed to fix the values 
of independent parameters. 

(1) Independent parameters 

The choice of independent parameters is, in principle, arbitrary. It occurs, 
however, that some of the choices are more convenient in the sense that 
the definition of the parameters is unambiguous to all orders in perturbation 
series. Let us consider, as a typical example, the problem of the definition 
of the Weinberg angle Ow.*> The parameter sin Ow is now widely used in 
analyzing neutral current phenomena. In fact sin Ow is convenient at the tree 
level in the sense that the structure of amplitudes relevant to the neutral 
current takes a simple universal expression in terms of this parameter. This 
simplicity, however, does not persist once higher order corrections are taken 
into account. With the higher order corrections included, there is no unique 
and proper definition of sin Ow and hence it is not convenient to adopt sin Ow 
as one of the independent parameters. In the following we explain, by taking 
two examples of different definitions of sin Ow, how the simple tree relation 
Mw = Mz cos Ow is modified by higher order corrections. 

Example 1. A set of parameters**> e, g and Mw was first employed by 
Appelquist et al. [Appelquist et al. 72 and 73] and later by Salomonson and 
Ueda [Salomonson and Ueda 75]. Here e is the electric charge renormalized 
at q 2 = 0, Mw the physical W-boson mass corresponding to the pole of the 
renormalized W-boson propagator, and g is the SU(2) coupling constant re­
normalized on the mass shell with the W-,l.l-V vertex function. The Wein­
berg angle is defined by***l 

sin Ow = e / g . (7 · 1) 

The Z-boson mass is not an independent parameter and is calculated as a 
pole position in the Z-boson propagator, i.e., the solution of 

(7 ·2) 

where Mzo is the bare mass and A 0 (q2) is the unrenormalized Z-boson self­
energy part. The counter term for the Z-boson self-energy part is settled 

*> In our scheme this problem is irrelevant since we do not take this parameter (also in 
[Inoue et aL 80] and [Bardin et aL 82]). 

**> We consider only three parameters in the present discussion and suppress all other inde­
pendent parameters like /.12 and ji. 

***> Note that cos08w is denoted as R in [Appelquist et aL 72 and 73]. 
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as a function of e, g and Mw and Eq. (7 · 2) reduces to the following form 

at the one-loop level: 

with A (q2) the renormalized Z-boson self-energy part. Solving Eq. (7 · 3), 

one finds 

(7 ·4) 

where L1 is a function of e, g and Mw calculable once A (q2) IS known and 
is of order e2 (or g2). Thus the relation Mw = Mz cos Ow is violated in this 

renormalization scheme. 

It should also be noted that the W-p-v vertex function on the mass 
shell includes the infrared divergence and hence g depends on the cutoff of 
photon energy after the cancellation of the infrared divergence. In this sense 

the scheme discussed in this example is rather inconvenient. 

Example 2. In the renormalization scheme employed by Sirlin [Sirlin 
80], g, g' and v are chosen as independent parameters, where g is the 
SU(2) coupling constant as before, g' the U(l) coupling constant and v the 
vacuum expectation value of the Higgs scalar. Other parameters Ow, Mw, 
Mz and e are defined as functions of g, g' v such that 

Mz2=v2 (g2 + g' 2) /4, 

e=gg' j(g2 +g'2) 112 =g sin Ow. (7 ·5) 

In dealing with loop corrections, counter terms for g, g' and v are determined 

by equating Mw and Mz (as defined by Eq. (7 · 5)) to the pole positions in 

the W- and Z-boson propagators respectively. The constant e defined by 

Eq. (7 · 5) is identified with the electric charge. As a result the relation 

Mw = Mz cos Ow holds to any order in the perturbation series. 
With the above two examples we now recognize that the actual meaning 

of the parameter Ow differs from scheme to scheme once the loop corrections 
are taken into account. 

(2) Input data 

The numerical values of independent parameters are determined by using 

experimental data on some measurable quantities. The resulting numerical 
values are affected by the choice of the quantities as experimental data as far 
as the truncated perturbation theory is concerned. 

Let us assume that radiative corrections to cross sections of processes A 
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and B, fJ A and fJa, respectively in 
the tree cross section by fJ Ao (g) 
correction by (J A 1 (g) (fJa1 (g)), and 
of determining the value of g. 

a theory with coupling constant g. Denote 

(rJa0 (g)), the cross section with one-loop 
so on. One may think of two possibilities 

One way is to take the experimental data on process A (denoted by rJ'fP) 
to fix the value of g in such a way that 

(7 ·6) 

where gA0, gA\ ··· represent values of g determined by the condition (7 · 6). 
With this coupling constant determined by Eq. (7 · 6), we can calculate radia­
tive corrections in process B, e.g., 

(7 -7) 

This correction is, in general, nonzero while the correction for process A 
vanishes exactly because of Eq. (7 · 6). 

The other way is to use the data on process B and the procedure i~ 

essentially the same as above if we exchange A for B. We denote by ga0, 
ga\ ·· · the coupling constants corresponding to the previous ones gA0, gA\ ·· ·. 

The important observation here is that, as far as we rely on the truncated 
perturbation theory, the value of the coupling constant determined as above 
depends on how one determines it, i.e., gAi=l=-gai (i = 0, 1, 2 ·· ·). The difference 
between gAi and gBi lies in higher order terms of order gi+ 1• 

§ 7. 2 Leading-log calculation 

In the presence of two hierarchically different mass scales /1 and 11' with 
11')>11. large logarithmic terms of the form (aln (/1' / !1)) n show up in conven­
tional perturbation series where a is an expansion parameter. A typical ex­
ample of such large-log terms is already met in QCD, where summing up the 
logarithmic terms to all orders is necessary as the expansion parameter a is 
not so small and the renormalization group method is very useful to deal 

with this problem. 

In electroweak theory we also have two hierarchically different sets of 
mass scales in low energy phenomena, i.e., (Mw, Mz) and low energy variables 
like incident energy and momentum transfer. Here the coupling constant a 
is very small and so the logarithmic terms do not cause any serious problem. 
It is, however, still useful to use the renormalization group method to pick 
up dominant contributions. A study in this direction was put forward by 
Marciano in the discussion of electroweak higher order effects [Marciano 79]. 
The formulation based on operator product expansion was recently proposed 
by Rome group [Antonelli and Maiani 81, Bellucci et al. 81] and by Harvard 
group [Dawson et al. 81]. We shall briefly survey these works in the 
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following. 

The effective electroweak Hamiltonian for low energy processes charac­
terized by mass scale /.L may be expressed by 

(7 ·S) 

where 0, are composite operators relevant to the process under consideration 
and M is a mass scale of order Mw (or Mz) and a (/.L) is the fine structure 
constant defined at the scale /.L. In Eq. (7 · S) all corrections suppressed by 
inverse powers of M are neglected [Kazama and Y ao SOa, SOb, SOc, S2]. As 
we consider here only the effective theory, the W- and Z-boson propagators 
are contracted and radiative corrections due to the photon propagator are 
relevant. 

The coefficient function Ci (M/ /.L, a (/.L)) satisfies the renormalization group 
equation 

(7 ·9) 

where {3 (a) is the so-called /3-function for the electromagnetic coupling and 
r. (a) is the anomalous dimension of operator Oi. They are defined as 
follows: 

da 
{3 (a) = /.L d/.L , Ti(a) = _!!:_ aZi' zi a /.L bare a fixed 

(7 ·10) 

with Oi (renormalized) = Zi _,Oi. Here we consider only the case where there 
is no operator m1xmg. Solving the renormalization group equation for the 
coefficient function Ci (M/ /.L, a (/.L)), we obtain 

Ct(M,a(/.L))=C,(1,a(M))exp[- fa(M)d.x r,(.x)]. (7·11) 
/.L k~ /3W 

Calculating Tt and {3 perturbatively 

Ti(a) =Ti0a+r/a2 + ... , 

{3(a) =/3oa2 +/3,a3 + ... , (7 ·12) 

we obtain an improved perturbation series for the coefficient function, 

c,(M' a(/.L)) =Ci(l, a(M)) [a(M) ]-n'!fl, 
/.L a (/.L) 

x [1+ {3, (7io- Ti')a(M) + ... J. 
f3o f3o /3, 

(7 ·13) 

Here Ct (1, a (M)) can also be calculated perturbatively in a (M) with no 
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large logarithmic term. 

In charged-current leptonic processes v"e-+/}.V, and /}.-+ev"v., the relevant 
operators are 

01=v'"r. (1-rs)v.·er•JJ., 

o. = j) prl (1- rs) v.· er•rs/J. . (7 ·14) 

The coefficient functions corresponding to these operators are calculated to 

lowest order and the anomalous dimensions r 1 and r. to one-loop order. The 

relevant diagrams in one-loop order contributing to r 1 and r. are shown in 

Fig. 7. 1. It is well-known that the contribution of Fig. 7. 1 is ultraviolet 

convergent and hence there is no renormalization of operators 0 1 and 0 2 • 

Accordingly r1 =r2 =0. Thus we have 

(7 ·15) 

The explicit calculation shows that 

C (1 0) = -C (1 0) = g•(M) 
1 ' • ' 8M~ 

(7 ·16) 

In neutral-current processes vJ-+vJ if= fermions) and charged-current 

process v"d-+JJ.U, the anomalous dimensions are not necessarily zero. 

Fig. 7.1. The photonic correction for the four fermion 
interaction JJpe-7JJf.le. 

Let us consider the v"d-+JJ.U process first. The relevant operators are 

01=Jir.(1-rs)V'"·ur•d, 

o.=Jir. (1-rs) ))p·ur•rsd. (7 ·17) 

Feynman diagrams contributing to the one-loop anomalous dimension are shown 

in Fig. 7. 2. The full contribution of Fig. 7. 2 is ultraviolet divergent and 

requires a renormalization. 

In the case of the process vJ-+v"f, the relevant operators are 

O' = fJ '"r 1 (1- r s) v'" · fr• A <•> f, 

0/= v'"r. (1-rs) v'"·fr•rsAs<•>f, 
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Fig. 7. 2. The photonic correction for the four fermion 
interaction v.d~JLu. 

Fig. 7. 3. The photonic correction for the four fermion 
interaction v.f~v.f. 

where A w and A 5 <t> denote t"3, Q, 1, etc. The relevant diagrams are shown 
in Fig. 7. 3. In Fig. 7. 3 the contributions of the first three diagrams are 
ultraviolet convergent while the final diagram creates a new ultraviolet 
divergence (the fourth diagram for operator 0 5t is convergent due to the pre­
sence of T5). 

In order to see the significance of the leading-log summation in electro­
weak theory, we quote gauge-boson mass shifts calculated by Antonelli and 
Maiani in Table 7. 1 [Antonelli and Maiani 81]. Here the leading-log cor­
rection .dMw(leading-log), is obviously very important while the correction of 
order a 2, .dMw(a21n2M), is small and comparable to the non-logarithmic correction 
of order a, .dMw (a). It should be mentioned here that to incorpolate the non­
logarithmic terms into the renormalization group argument, one should deal 
with the next-to-leading terms as seen in Eq. (7.13) and calculate two-loop 
anomalous dimensions. 

Table 7.1. 

Mf:> ilMw ilMw(a) ilMw(a'ln'M) (leading-log) 

79.48 (GeV) 3.50 -0.70 0.20 
77.74 3.27 -0.65 0.18 
76.10 3.07 -0.61 0.16 

M'zOl ilMw ilMz(a) ilMz(a"ln"M) (leading-log) 

90.00 (GeV) 3.83 -0.40 0.24 
88.59 3.64 -0.36 0.21 
87.29 3.46 -0.33 0.20 
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Chapter 8 

Conclusions and Outlook 

In the present review article, we have developed the on-shell renormali­

zation procedure in the Weinberg-Salam theory and given a proof of the charge 
universality. The procedure has been applied to the study of higher order 

effects in purely leptonic weak processes v "e--';}) "e, li "e--'; li "e, }) "e--'; /1Ve and /1 

--';ev"v •. In the course of these investigations we have met with several interest­

ing problems of theoretical and phenomenological importance. We shall 

briefly recapitulate these problems here. 
(1) On-shell renormalization We have proposed the on-shell re­

normalization scheme of the W einberg-Salam theory as a most convenient and 
physically significant scheme and have developed the renormalization procedure 

in this scheme. The consistency of this scheme has been explicitly proved 
by using the Ward-Takahashi identities especially in the neutral gauge boson 
sector. The structure of the theory has been clarified paying special attention 

to the relation between physical particles and corresponding Heisenberg fields. 
(2) Charge universality While the proof of the charge universality 

is straightforward in quantum electrodynamics, the proof is nontrivial in gauge 

theories with spontaneous symmetry breakdown such as the W einberg-Salam 

theory. One would naturally expect that the charge universality be satisfied 

in the Weinberg-Salam theory. By the lack of the proof, however, one could 
not safely perform higher order calculations. Hence it is worth spending a 
considerable amount of time to prove it. We have given a lengthy but trans­

parent proof of the charge universality in § 3. 4 by the use of the Ward­
Takahashi identity. 

(3) Scheme dependence There is a variety of the renormalization 

schemes employed by many authors. The difference of the schemes should 
not lead to different physical predictions since the choice of a scheme is a 
matter of convention which is unphysical. In practical calculations, however, 
we truncate perturbation series and obtain expressions differing from each 
other by neglected higher-order terms. This situation creates some confusion 
when one tries to make a comparison of results obtained in different schemes. 
We have tried to clarify this point as much as possible in §§ 3.1 and 7.1. 
In particular there are two important ingredients in the problem of renormali­
zation schemes: the definition of renormalized parameters and the choice of 

input data. In choosing independent parameters, one could pick up a para­
meter (or parameters) which is not directly measurable. For ex<.mple, the 

Weinberg angle Ow is not a directly measurable quantity although it is quite 
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a convenient parameter at the tree level. Beyond the tree level the defini­

tion of sin Ow is not unique and its definition must be clearly stated when two 
results obtained by different schemes are compared. We have adopted the on­

shell renormalization scheme throughout the present review article with the 
choice of independent parameters a, Mw and Mz (and also fermion and Higgs 

masses which we omit for a moment). Since our parameters are all directly 
measurable in experiments, we have no such ambiguity of the definition of 
parameters. 

In order to fix these independent parameters, we must choose the sufficient 
number of input experimental data. If the data on Mw and Mz were known, 
our scheme would be the most convenient to perform higher order calculations. 
In the present situation one is forced to take some other choices of input data. 

Different choices of input data may lead to quite a large discrepancy in the 
size of radiative corrections. This apparent disagreement can, however, be con­

sistently explained by careful examination on the choice of parameters fixed 
in the calculation of radiative corrections. The careful analysis of this problem 

has been made in §§ 6. 1 and 6. 2. 

(4) Large logarithmic corrections As discussed in Chapter 6, we have 

separated the electroweak radiative correction into two parts, the electromagnetic 
part and the rest. We have obtained, in our scheme, rather large corrections 

concerning the latter part. The origin of these large corrections may be traced 
back to the large logs of the type aln (M2/q2) and aln (M2/m/) where M 
stands for Mw or Mz and m1 for light fermion masses. The large logs of 

this type are harmful to perturbative calculations and so they have to be 
summed to all orders. The renormalization group method is quite useful for 
this purpose just as it was in perturbative QCD. The renormalization group 

analyses of the leading log contribution to electroweak processes were carried 
out by some groups as described in § 7. 2. According to the analysis by the 
Rome group mentioned there, the magnitudes of the leading log terms of order 

a, [ aln (M2 / q2 ( m/))], those of the non-log terms of order a, [a], those of 

the leading log terms of order a 2, [a2ln2(M2/q2(m/))], etc., are in the follow­
ing order, 

This means that the effect of the leading log sum to all orders 1s less im­
portant than that of non-log terms. Thus the conventional perturbation 

to one-loop order which takes care of terms [alnMJ and [a] is complemen­
tary to the leading log sum by renormalization group method which takes 
into account terms of [alnMJ, [a2ln2M], .... It would be interesting to esti­
mate the next-to-leading log contribution in the renormalization group method 

where two-loop anomalous dimensions of relevant operators must be calculated. 

(5) Real photon emission The calculation of radiative corrections to 
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exclusive electroweak processes necessarily includes infrared (soft) divergences 
due to the vanishing photon mass. There is another source of divergences 
if some of the charged lepton masses vanish. This is the so-called mass singu­
larity. Actually the lepton has small but nonvanishing mass mL and the 

singularity takes the form ln2(q2/mL2) and ln(q2/m/). As is well-known, both 
of the soft divergence and the mass singularity are removed by adding real 
photon emission effects. The soft divergence is cancelled by the low energy 

part of the real photon effect while the mass singularity is cancelled by the 
collinear configuration of the emitted real photon and the lepton. The hard 
photon effect, i.e., the collinear part of the real photon effect is more compli­
cated to calculate than the low energy part of the real photon effect. In 

order to compare the calculated results with experimental data, however, it 

is indispensable to include the hard photon correction. We have performed 

this calculation in processes including neutrinos and presented the result in 
§ .6. 2. 

We have summarized here important problems some of which deserve 
further discussion. We believe that our investigation in the present review 

article is quite inclusive and presents all the necessary tools to discuss radiative 
corrections to electroweak processes. 

By using low energy data, main independent parameters are determined to 
one-loop order. In fact the values of Mw and Mz to one-loop order are now 
known, 

Mw=79.2 GeV, 

Mz =90.5 GeV. 

With a proper definition of the Weinberg angle 8w, we can also fix the value 
of sin2 8w at the mass scale M. Thus we have settled the necessary informa­

tion on the values of relevant parameters at mass scale Min grand unification 
theories. Once the values of the parameters at mass scale M are fixed, the 
corresponding values at the grand unification mass scale are easily calculated 
by the renormalization group method. 

Throughout the paper the Higgs particles are treated as elementary 
scalar fields. If the spontaneous breakdown of the SU(2) X U(l) symmetry 
is generated dynamically, the Higgs particles are composite systems of some 
fundamental object. This possibility has been studied by many authors and 
has led to models of composite quarks and leptons. If this is the case, our 

analysis in the present article is considered to be an effective low energy 
theory for electroweak interactions. 

We have confined ourselves to the W ein berg-Salam theory of electroweak 

interactions and expected the existence of the W- and Z-boson. Experimental­
ly it is of course an open problem whether the W- and Z-boson will be 
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observed or not. Anticipated experiment in search for W and Z is a great 

challenge to the present electroweak theory. If W- and Z-boson will not 

be observed, there will emerge ages for theorists. 
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Appendix A 

Dimensional Regularization 

Dimensional regularization ['t Hooft and Veltman 72a] is widely used 
in calculations of radiative corrections. Since an analytic continuation in the 
space-time dimensions is not unique, there is a variety of conventions in this 
method. We adopt the following convention: Tr(l) =4, {r11 , r 5} =0 and 
f dnk/ (2n) Di in D-dimensional space. Below we list various formulas in our 
convention. 

A. 1 r matrix algebra in D-dimensional space 

The basic algebra is 

Metric tensor g11• satisfies 

Combining (A ·1) and (A· 2), we obtain 

r.r,.r'= (2-D)r,., 

r.r,.r.r'=4g,..+ (D-4)r,.r., 

r.r,.r.rpr'= -2rpr.r,.+ (4-D)r,.r.rp. 
Further, by using our convention on unit matrix 1, 

Tr(l) =4, 

we find 

As mentioned above, the r 5 matrix is defined so that it satisfies 

(A·1) 

(A·2) 

(A·3) 

(A·4) 

(A·5) 

(A·6) 

(A·7) 

(A·8) 

(A·9) 

(A·10) 

There occurs no trouble concerning the r 5 matrix m the present case, 
since the Weinberg-Salam theory is an anomaly-free theory. 
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A. 2 Momentum integral 

Momentum integral is extended as 

(A·ll) 

This Minkowski-space integral is performed after Wick rotation into Euclidean 
space, k0 = iKo. 

S d° K = S dKodK1• • ·dKn_1 

= S K 0 - 1dKdSJ0 , (A·l2) 

(A·l3) 

We list below several typical integral formulas: 

s d 0 k·k1.j(k2) =0. (A·l4) 

s d 0 k·kl'kJ(k2) = ~gl'• s d 0 k·k2f(k2). (A·l5) 

(A·l6) 

(A·l7) 

inDJ2 ( _ 2) -E+2-a-li r (e- 2 +a+{]) 
q T(a)T({l) 

x B (2-a- s, 2-{1- s). (A·l8) 

= -inDJ2q (-l)-c+2-a-fl T(s-2+a+fl) B(3-a-s 2-{1-s). 
I' T(a)T({l) ' 

(A·l9) 

(A·20) 
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A=-(- 2)-a+a-a-pT(e.-3+a+/3) B(3-a-e. 3-{3-e.) 
q 2T(a)T({3) ' ' 

(A·20a) 

B= (- 2)-B+2-a-fl T(e.-2+a+/3) B(4-a-e. 2-/3-e). 
q T(a)T(/3) ' 

(A·20b) 

T(x) and B(x, y) represent the Gamma and Beta functions respectively. 

(A·21) 

(A·22) 

1 T(e.-1) = --- (1-r) +O(e.), (A·23) 
e 

(r is the Euler constant) 

B(x, y) = T(x)T(y) = [ 1dH""-1(1 -~)Y-1 
T(x+y) Jo 

i
~ ty-1 

= dt----
0 (1+t)-"+Y 

(A·24) 

Appendix B 

Formulas for One-Loop Feynman Amplitudes 

We give one-loop Feynman amplitudes expressed in the form of Feynman 

parameter integration. They are obtained by performing the loop momentum 
integral. We drop some overall factors in order to make formulas simple. 

In the following, we express the ultraviolet divergent part as 

1 
Cuv=--r+ln 4n 

e 

and we set D--? 4 for the convergent parts. 

B. 1 Two-point functions 

Here we use the following function, 

r(A, B)= (1+AB)- (A+B)r6, 

where mh m2, and q are shown in Fig. B. 1. 

(B·1) 

(B·2) 

(B·3) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article-abstract/doi/10.1143/PTPS.73.1/1848359 by guest on 06 January 2019



Appendix B 

(a) (b) 

Fig. B. 1. Typical diagrams of two-point functions. 

k is the loop momentum and q is the external momentum. m,, mz and 

m denote the masses of particles of internal lines. x and (1-x) in 

(a) show our choice of Feynman parameter. 

Z(q) 

+~1~qr(-A, -B) {cuv-1-2 f 1dx(1-x)ln(D2(x))}. 
16n2 Jo 

191 

(B·4) *l 

Z(q) 

+~1~qr (A, -B) {cuv-2 f 1dx(1-x) ln(D2(x))}. (B·5) **l 
32n2 Jo 

*> A solid line and a wavy line represent a fermion and a gauge boson respectively. 

**' A dashed line represents a scalar particle. 
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(m2=m/(1-x) +mlx) (B·6) 

¢a. Ifap(q) 

S dDk 
""' (2n)Di {( -q+k-q)pgM+ ( -k+q-k)agp"+ (k+q)dgap} 

gPP' g""' 
X -=---:c ---:--'-c-:-----.:--

B k2- m 12 (k-q) 2- ml 

X {(q+k)".gllp'+ (-k-k+q) 11gP'"'+ (k-q-q)P.g"'ll} 

-1 
=--qaqp(11Cuv+2) 

48n2 

+-!_ga11 {1_ (m/+ ml) (3Cuv+ 1) +_!_l(19Cuv-3)} 
16n2 2 6 

+_l__q"'q11 l 1dx{1 +5x(1-x) }ln (D2(x)) 
8n2 Jo 

Ifap(q) 

(B·7) 

(B·S) 

S dDk ( k+ k) 1 1 ( -k-k+q)p 
rv (27C)Di - q- a m12-k2 m22- (k-q) 2 

=-1-{_!_cuvqaq11 +gafJ(Cuv+ 1) (m/+ml- l)} 
16~ 3 3 

(B·9) 
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-~ f 1dx{-l_gafiD2(x) +x(1-x)qaqfl}ln(D2(x)). 
16n Jo 2 

(B·10) *> 

(B·ll) 

(B·12) 

X {(1-AB)m 2x- (1+AB)m1 (1-x)}. (B·13) 

3 11 = ---qa dx(1-2x)ln(D2 (x)). 
167t'2 0 

(B ·14) 

(B·15) 

*' A dotted line represents an FP-ghost. 
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a 

, ... l, 
I \ 
\ I ' .. ,. ....... 

I 
I 

IIa(q) 

S dDk (k k ) 1 1 
'"'"' (27r)Di + -q a m/-k2 m/- (k-q) 2 

1 il =--2 Qa dx(l-2x)ln(D2 (x)). 
167r 0 

1 
m22_ (k-q)2 

= -l qa{.!.cuv- f 1dx(l-x)ln(D2(x))}. 
167r2 2 Jo 

(B·l6) 

(B·17) 

- (1-AB)x(l-x)i} {Cuv-ln(D2(x))} 

+(l-AB) {2Cuv+l-2ln(D2(x))}D2 (x)]. (B·18) 

I II (q) 

0 
I 
I 

I 
I 

() 
I 
I 

I 
I ,...L, , ' ' \ 

' J '., ....... 
I 
I 

=_l{2Cuv-1-2 f 1dxln(D2(x))}. 
87r2 Jo (B·19) 

II(q) 

+D2(x) {2Cuv+l-2ln(D2 (x))} ]. (B·20) 

II(q) 

(B·21) 
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Appendix B 

Il(q) 

Il(q) 

S dDk (Jt!p 

rv (27r)Di (Jpt! k2 -m2 

=_l_m2 (2Cuv+ 1-2ln m 2). 

8rr2 

Il(q) 

S dDk 1 
rv (27r)Di m2-k2 

= - 1 m 2 (Cuv+1-ln m2). 

167r2 

B. 2 Three-point functions 

Momentum flow and masses are shown in Fig. B. 2. 

Fig. B. 2. Typical diagrams of three-point functions. 
k is the loop momentum and m1, ms and M denote the 
masses of propagating particles. 

We take the Feynman parametrization as 

1 
ABC 

where 

A=m/- (Pt-k) 2 , 

B =m22- (p2-k) 2, 

C=M2-k2 • 

195 

(B·22) 

(B·23) 

(B·24) 
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We use the following functions, 

0 
I 
I 

Da(x, y) = (1- y)M2+ y{m2-q2x(1-x)}- y (1- y)p2, 

( m 2== (1-x) m/+xm22, P= (1-x) P1 +xP2) (B·25) 

r(A, B, C)=(1+AB+BC+CA)-(A+B+C+ABC)r5. (B·26) 

1 il il dxdy --m2rCA, -B, -C) y(p1-YP)a 
4n2 o oD3 (x,y) 

1 f 1 11 dxdy + 8n2r(A, B, C) Jo Jo Ds(x, y) y(p1-YP)ra(:P2-yp) 

+-1-r(A,B,C)ra{Cuv-2-2 f 1 l 1dxdyyln(Da(x,y))}. 16n2 . Jo Jo 
(B·27) 
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- f 1 f 1dxdy y { (p1-yp)(p2-yp) +2ln(Da(x, y))}J. (B·28) 
Jo Jo D 3 (x, y) 

m1 + P1- k (1 + C ) 1 
X 2 ( k) 2 ~ r • M2 k2 m1- P1- -

1 1111 y =--m1m2rC -A, B, C)ra dxdy 
167r2 0 . 0 Ds(x,y) 

1 ~~ II dxdy 
+ 16n2r(-A, -B, C) Jo Jo Ds(x, y) y(p2-yp)raCP~-yp) 

+-1-r(-A, -B,C)ra{Cuv-1-2 11 11dxdyyln(D3(x,y))}. 
32n2 Jo Jo 

(B·29) 

1 1111 y =--m1m2rC -A, -B, -C) dxdy 
16n2 0 0 Da(x,y) 

1 11 11 dxd 
+ 167r2 mlr (-A, B, C) Jo Jo Da(x, ~) Y (p2- yp) 
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3 fl fl dxdy 
= 16n-2Mr(A, -B) Jo Jo Da(x, y) y{2(p2-YP)a-flra} 

+-1-r (A, B) fl fl dxdy Y2 
16n-2 Jo Jo D3 (x, y) 

X {(p2-2p1 + YP)Pra-2(Pl + P2-2YP)aP+raP(PI-2P2+ yp)} 

--1-r(A, B)ra{3Cuv-2-6 e f 1dxdyyln(Da(x, y))}-
16n-2 Jo Jo 

(B· 31) *> 

=-Mr(A, B)ra Y dxdy 1 il il 
167r2 o oDs(x,y) 

1 f 1 f 1 dxdy 2-
+ 16n-2 r(A, -B) ra Jo Jo Ds(x, y) y p. (B-32) 

=-Mr(A, -B) y dxdy 1 . ilil 
4n-2 o oD8 (x,y) 

_ _!_r(A, B) fl fl dxdy y2p. 
Sn-2 Jo Jo D 8 (x, y) 

(B-33) 

*> r(A,B) is defined in Eq. (B·3). 
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1 (A B) il il dxdy 2(2 -)----2r , - Y pl-p2- YP P 
161l' o o D 8 (x, y) 

-~1~r(A, -B) {2Cuv-1-4 f 1 f 1dxdy yln(D8 (x, y))}. 
327r2 Jo Jo 

....,,___,.,,__,,_ r (h P1) 
\ I 

(B·34) 

':-"' "'"'s (:~kDi (1+Ars) ~~~2 (1+Brs) ml- (~2-k)2 m12_ (~1-k)2 
=~Mr(-A, -B) y dxdy 1 ilil 

167r2 o oDs(x,y) 

+-1-r(-A, B) fl fl dxdy y2p. 
16n2 Jo Jo D 3 (x, y) 

(B·36) 

B. 3 Four-point functions 

Masses and momentum flow are shown in Fig. B. 3. Box type diagrams 

do not include UV divergence. Therefore we set D~4 in the following. 
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p4 m2 p3 - 4--

M2 Ml 
Fig. B.3. Typical diagram of four-point func-

tion. k is the loop momentum and 
k mt,• and Mt,o denote the masses of - propagating particles. - ml -p2 pl 

Feynman parametrization IS performed as 

---= dx dy--------------1 il il 1 1 
ABCD o o {A(1-x) +Bx} 2 {C(l-y) +Dy} 2 

where 

il il il 6z(1-z) = h ~ ~ ' 
o o o [ {A(1-x)+Bx}z+ {C(1-y)+Dy}(1-z)] 4 

A=M/- (P1 -k) 2 , 

B =M22- CP2-k) 2, 

And we use the following function: 

D4 (x, y, z) 

= {(1-x)M/+xM/}z+ {ym 22 + (1-y)m/} (1-z) 

- (1-x)z(1- (1-x)z)p/- {xz+y (1-z)} {1-xz- y (1-z)} Pl 

- y (1-z) {1- y (1-z)} P42-2y (1-z) {1-xz- y (1-z)} P2P4 

+2z(1-x) {y (1 ~z) +zx} PtP2+2 (1-x) yz(1-z) PtP4. (B·37) 

In Eqs. (B-38)'"'-'(B-40), spinors il(P), u(P) are included in order to avoid 
confusion. However, on-shell relations, pu(p) = mu(p), etc., have not been 
used in the derivation of these formulas. 
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gPP' gaa' 
X 2 2 ----~--~ 

(p2-k) -M2 (P1-k) 2-M/ 

xu(P2)rp-(1+Brs) m:+kk2 ra-(1+Ars)u(p1) 
m1-

1 11 11 11 z(1-z) =--- dx dy dz--~--~~ 
167l'2 o o o {D4 (x,y,z)} 2 

xu(p4)rP[m2rCC, -D) -r(-C, -D) {z(1-x)p1 

+ (zx+y(1-z) -1)p2+ (y(1-z) -1)p4} Jrau(Ps) 

xu(P2)rp[m1r(A, -B) +r(-A, -B) {z(1-x)p1 

+ (zx+ y (1-z)) P2+ y (1-z) P4} Jr ,.u (PI) 

+--1- l 1dx l 1dy l 1dz z(1 -z) u(p4)r(C,D)rprarau(Ps) 
327l'2 Jo Jo Jo D 4 (x, y, z) 

201 

(B·38) *> 

IT A(p,,p,;p,p,) 

'"'"'J d 4k4. u(p4) (1+Drs) ":2-k+p2+P4 /P(1+Crs)u(Ps) 
(27r) t m2 - (k- P2- P4) 

1 gpa 
X ----,-----------,-- ------=------
M/- (k- P2) 2 (k- PI) 2-M/ 

x u CP2) (1 + Br s) :~ ~ ~2 r,. (1 + A r s) u CP1) 

-1 11 11 11 z(1-z) =--- dx dy dz--------'-------'---:---,----::-
161l'2 o o o {D4(x,y,z)} 2 

xu(p4) [m2r(C, -D) -r( -C, -D) {z(1-x)p1 

+ (zx+ y (1-z) -1) P2+ (y (1-z) -1)p4} ]rPu (Ps) 

xu(y2) [m1r(A, -B) +r( -A, -B) {z(1-x)p1 

+ (zx+ y (1-z))p2+ y (1-z)p4} ]rPu (PI) 

1 11 11 11 z(1-z) - --- d X d y d Z -=--c'----'--c---
321l'2 o o o D4(x,y,z) 

*> r(A,B) is defined at the beginning of B.l, Eq. (B·3). 
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E 

""S d 4k4. u(p4) (1+Drs) ":2-k+p2+p4 2(1+Crs)u(Pa) 
(2n-) z m2 - (k- P2- P4) 

X 1 1 
M22 - (k- P2) 2 M/- (k- P1) 2 

xu:(p2) (l+Brs) m~+k2 (1+Ars)u(PI) 
m1-k 

=--- dx dy dz--~~~---1 11 11 11 z(l-z) 
161!2 o o o {D4 (x,y,z)} 2 

x u:(p4) [m2rC -C, -D) -r(C, -D) {z(1-x)p1 

+ (zx+ Y (1-z) -1) P2+ (y (1-z) -1)p4}] u (Pa) 

xu:(p2) [m1rC -A, -B) +r(A, -B) {z(1-x)pl 

+ (zx+ y (1-z) )p2+ y (1-z)p4} ]u (PI) 

+-1- r1dx r1dy rldz z(1-z) 
321!2 Jo Jo Jo D 4 (x, y, z) 

Appendix C 

l/M Expansion of Some Feynman Amplitudes 

(B·40) 

One-loop Feynman amplitudes relevant to our calculation consist of the 
two-point (self-energy part), three-point (vertex part) and four-point (box 
diagram) functions. These functions, denoted by A 2 , A 8 and A 4 respectively, 
are expressed by the following integral forms, 

A2= fax I2(x, M, m, q), (C·1) 

Aa= 11dxdy Ia(x, Y, M, m, P1, P2), (C·2) 

A4= 11dxdydz 14(x, Y, z, M, m., P1, P2, Ps), (C·3) 

where M and m generically represent large masses (like Mw and Mz) and 
small masses respectively, and q, P~> P2 and Ps are momenta of external lines. 
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It is well-known that in one-loop order the Feynman integrals can be per­

formed analytically except for an unintegrable special function, Spence func­

tion (or dilogarithm) ['t Hooft and Veltman 79, Lewin 58]. Actually the 
integral (C ·1) may be performed explicitly in terms of elementary functions 

while the integrals (C · 2) and (C · 3) are expressed in terms of elementary 
functions and the Spence function. It is, however, important to note that 

~m, lql, IPil (i = 1, 2, 3) as far as low energy phenomena are concerned 
and hence useful approximate formulas may be derived for Eqs. (C ·1), (C · 2) 

and (C·3). 

We consider the amplitudes (C ·1), (C · 2) and (C · 3) for Feynman dia­
grams including at least one large-mass particle with mass M and derive the 
formulas in which these amplitudes are expanded in powers of 1/ M. The 
leading term in this expansion will be found to give a good approximation 

to the full amplitude and to have a simple form. 

C. 1 Two-point functions (self-energy part) 

The integrals for which we wish to derive the 1/ M expansion formulas 

have the following forms, 

where n = 0, 1, 2 and 

i 1dx x"'ln D' 
2 ' 0 

with two different large masses M 1 and M 2• 

(C·4) 

(C·5) 

(C·6) 

(C·7) 

If one expands the integral (C · 4) in powers of 1/ M by separating 

ln D2=ln M 2+ln (1-x) +ln[1+ m 2x-lx(1-x) ], 
M 2 (1-x) 

one immediately see that the coefficients of the expansion in 1/ Mare divergent 
integrals (divergent at x = 1). Hence we use the following form: 

where 

f= -q2x(1-x) 
M 2 (1-x) +m2x' 

(C·8) 

(C·9) 
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and expand ln D2 in powers of f. This expansion in f is uniformly convergent 
and so the term-by-term integration is justified, 

(C-10) 

We easily see that the l-th order term in Eq. (C -10) 1s of order (1/ M) 1-1 

up to ln(m2/M). Hence Eq. (C-10) is the desired expansion. We list here 
the explicit expansion formulas for n = 0, 1, 2 to order 1/ M 2, 

(C-11) 

dxxlnD2 =-lnM2---- -+-+m2 ln-i 1 1 3 1 (l m 2 m 2
) 

o 2 4 M 2 3 2 M 2 ' 

(C-12) 

itd 21 D 1 1 M2 11 1 (l 5 2 21 m 2 ) xx n 2=- n ---- -+-m +m n- . 
o 3 18 M 2 4 6 M 2 

(C -13) 

For the integrals of type (C-5), we use the device 

D/ = [M/(1-x) +M22x] (1+ f'), 

f'= -lx(1-x) (C-14) 
M/(1-x) +M/x' 

and expand the integrals in powers of f'. We find the following formulas, 

M/M/ l M/1 
- (M/-M22)s n Mt2 ' 

l 1dxx2 lnD/=.l_lnM/-.l__.l_( M/ rln M/ 
Jo 3 9 3 M/-M/· M/ 

(C ·15) 

(C-16) 
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M/ 

(C ·17) 

C. 2 Three-point functions (vertex part) 

We wish to derive the 1/ M expansion formulas for the integrals of the 

form, 

rdx rdyy"lnD3<'>, (n=0,1) 

fdx rdyy"/Da<•>, (n=0,1,2,3) 

where i=1 or 2 and 

with 

Da(l)= (1- y)M2 + y[m2 -lx(1-x)]-P2Y (1- y), 

Da<2>= (1- y) m 2 + y[M2 -lx(1-x)] -P2Y (1- y) 

m 2=(1-x)m12 +xm/, 

M 2=(1-x)M/+xM/, 

(C·18) 

(C ·19) 

(C ·20) 

(C·21) 

For this purpose it is sufficient to consider the case where the D 3 <»•s are 

replaced by 

D= (1-y)C+yB-y(1-y)A (C-23) 

with C}>B, A. The formulas for the case B}>C, A may be obtained from 

the above case by changing the integration variable y to 1- y. 

The formulas for the integral (C ·18) are essentially the same as Eqs. 

(C ·11) and (C ·12). The 1/ M expansion formulas for the first integration 

of the integral of type (C ·19) are given by 

dy-= --ln--- B ln-+A 2+ln-i 1 1 1 B 1 [ B ( B)] 
o D C C C2 C C ' 

(C ·24) 

l1dy~= _ __!_[1+ln B] _ __!_[B(1+2ln B)+ A(~+ln B)] 
Jo D C C C2 C 2 C ' 

(C ·25) 
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dy-= -- -+ln- -- B -+3ln- +A -+ln-i 1 y 2 1[3 B] 1[ (5 B) (17 B)] 
o n c 2 c C 2 2 c 6 c ' 

(C ·26) 

dy-= -- -+ln- -- B -+4ln- +A -+ln- . i 1 y 8 1 [11 BJ 1 [ (13 B) (37 B)] 
o D C 6 C C 2 3 C 12 C 

(C ·27) 

The remaining x-integration can be performed by applying the formulas 
already obtained. 

C. 3 Four-point functions (box diagram) 

We consider the function A 4 in Eq. (C · 3) and pay attention to the z­

integration. The relevant integrals are of the form, 

i l zn 
dz-

D 2' 
0 4 

(C·28) 

where 

D 4 =Cz+B+Az (C ·29) 

with C'}?>B, A and 

C= (1-x)M/+xMl. (C·30) 

We expand Eq. (C · 28) in powers of 1/C. For this purpose we use the 
following form of D 4, 

D 4 = (Cz+B) (l+f), 

f= Az 
Cz+B 

(C·31) 

Expanding the integrands in Eq. (C·28) m powers of f, we obtain for n>1 

i l zn I n1
C- n~2 - n~1 ~2 ' (n>2) 

dz-= 
o D4 1 A B B 

---+-ln- (n=1) 
C C2 C2 C' 

(C·32) 

(C·33) 

The remaining x- and y-integration may be performed in the same way as 
before. 
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For the box diagram with the photon and W boson as internal lines 
(see Fig. 5. 2), the function D4 takes the form, 

D 4 =Czx+B+Azx, (C·34) 

where C=M2)>B, A. As before we rewrite D 4 such that 

with 

D 4 = (Czx+B) (1+f) 

f= Azx 
Czx+B 

(C ·35) 

(C·36) 

We expand the necessary integrals in powers off and perform the z-integra­
tions term by term. The remaining x- and y-integration, however, are not 

so simple. The full expression is given in Eq. (5 · 64). 

Appendix D 

Fn and Gn Functions 

As has already been mentioned in Appendix C, the integration appearing 
m the calculation of the two-point functions may be performed explicitly. It is 
convenient to define the following functions Fn and F: 

(D·2) 

where n = 0, 1, 2. The analytic expressions for F 0 , F 1 and F 2 are given by 

(D·3) 

- _!_ 0 + _!_ (1 + 0) r ln p, 
2 4 

(D·4) 

Fz(Mt, Mz, l) =_!_ ln Ml-_! _ _!_ (1+0) {C1+ 0) 2 - 3M/} ln(Ml) 
3 9 6 q2 M/ 
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+ _!_ { (1 + a) 2-M l} r ln p , 
6 l 

(D·5) 

where 

a=(M/-M/)/l, 
r==- v (1 +a) 2 - 4Mljq2, 

M/+M22 - (1+r)l 
P M/+M22 - (1-r)l' 

The function Gn is defined by 

a G" (Mt, M2, q2) ==--F" (Mt, M2, l), 
al 

(D·6) 

(D·7) 

(D·8) 

=- faxx"+ 1 (1-x)/[M/(1-x) +M22x-lx(1-x)] 

(D·9) 

Performing the integration (D · 9), we find for G0, G1 and G2, 

(D ·11) 

+ _!_ {M/ (1 +a) (I+ 4a) -a (1 +a) a- 2Mt4} In q] . 
2 l I r 

(D·12) 
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Appendix E 

Renormalization Constants 

We first summarize all the relevant renormalization constants defined in 
§ 4. 3: 

z112 
tj (i, j=A, Z), tJMz2 , 

Zw, tJMw2 , T, 

(ZL112) nm, (ZR112) nm, tJm,,r, 

Zx' Zx,' Z.p' iJm/' 

z,, (i, j=A, Z), Za, Y. (E·1) 

These constants are determined on the mass shell by the use of the renormali­
zation conditions described in § 4. 3. In actual calculations in Chapter 5, we 
need only the following subset of the renormalization constants (E ·1) 
according to our approximations and assumptions: 

Z~~\ tJMi, Zw, tJMw2, (Zl,R) 112 (=(Zt:2R)!l), 

tJm 1 (l=e or p.), Y. (E·2) 

We here present the explicit expressions for the above constants (E · 2) 
m one-loop order in the on-shell renormalization scheme. 

E. 1 Gauge-boson field renormalization constants 

The constants ~Ji, Z!/i, Z¥1. ZYl and Zw are calculated using the Feynman 
diagrams Figs. 5. 3, 5. 4, 5. 5 in § 5. 3 and Fig. 5. 6 in § 5. 4 respectively. 
We list the results in the following: 

z1;2_1- e2 Cuv [N(8M4-10M2M2+5M4) 
zz- 247!2 Mw2(Mz2-Mw2) 3 w w z z 

-! (18Mw4 +2Mw2Mz2-Mz4) J, (E·3) 

Zl/2=~ Cuv [-N(8M 2-5M2) +_!_(30M 2+M2)] 
AZ 12n2 MwVMz2-Mw2 3 w z 8 w z ' 

(E·4) 

z1;2 e2 M w (C l M 2) 
zA = --2 I 2 2 uv- n w ' 

8n vMz -Mw 
(E·5) 

Z1'!=1-~[__!_:EQ/(Cuv-lnm/) _1_(Cuv-lnMw2) _ __!_], (E·6) 
87!2 3 i 4 6 

(E·7) 
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where the summation on i runs over all fermions and color degrees of freedom, 
N is the number of generations and Cuv is given in Eq. (5·1) with /L=m: 
Cuv=1/e-r+ln 4n-. It should be noted here that we have discarded all 
finite pieces in Eqs. (E · 3), (E · 4) and (E · 7). The reason for this is that 
Z}f,i, ~Ji and Zw are cancelled out when all the Feynman amplitudes are 
summed up and only the divergent pieces are necessary to get finite amplitudes 
m the intermediate stage. The renormalization constant ~11 is necessary only 
in determining the constant Y. 

E. 2 Gauge-boson mass shifts 

The mass shifts aMz2 and aMw2 are obtained by considering Fig. 5. 3 in 
§ 5 3 and Fig. 5. 6 in § 5. 4 respectively. Utilizing the Fn and F functions 
defined in Appendix D and 7ft defined in Eq. (5 ·10), we present the results 
for aMz2 and aMw2 in the following: 

aM 2= e2Mz2 [.iN(5M 4 -10M 2M 2 +8M 4) 
z 16n-2Mw2(M/-Mw2) 9 z z w w 

_l_Mz2 L: m/+l_(7Mz4 + 10Mz2Mw2-42Mw4)]Cuv+aM:f1 , 
2 i 6 

(E·8) 

aM 2 - - e2 
["" M 4 {M 2 (-n 2 + 1) F (m m M 2) zt- 32n-2Mw2(M/-Mw2) 7-' z z 'li i, t, z 

-m/Fo(mt, mi, Mz2)}- Mz2 (Mz4 -2Mz2Mw2 +4Mw4) 

3 

+Mz2(Mz4 -4Mz2Mw2+24Mw4)F(Mw, Mw, Mz2) 

+Mw2(3Mz4 -14Mz2Mw2 -16Mw4)Fo(Mw, Mw, Mz2) 

+Mz6 {2Fo(m.p, Mz, Mz2) -F2(m.p, Mz, Mz2)} 

- m/Mz4 {F1 (Mz, m.p, Mz2) - ~ ln m/} J , (E·9) 

aMw2=- e2Mz2 
[ ~ IUr,l 2 (3m/+3m/-2Mw2) 

96n-2(Mz2-Mw2) <I,tl • 

+31Mw2 -6Mz2]Cuv+aM~1 , (E·10) 
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+ {(Mz4 -20MiMw2-8Mw4)Fo(Mz, Mw, Mw2) 

+ (Mz4 +16MiMw2+4Mw4)Ft(Mz, Mw, Mw2) 

-Mw2(Mi+20Mw2)F2(Mz, Mw, Mw2)} 

+ 4Mw2 (Mz2- Mw2) {- 2Fo (0, Mw, Mw2) 

+Ft(O, Mw, Mw2) -5F2(0, Mw, Mw2)} 

+m,/Mz2 {! lnm/-Ft(Mw,m4>,Mw2)} 

E. 3 Lepton field renormalization constants 

211 

The constants zL·. ZL! and ZR! are calculated through the Feynman 

diagrams Fig. 5. 7 in § 5. 3. In the calculation we have neglected the Higgs 
contribution since its effect is of order m!/ Mw. The result is as follows: 

ZL"=1-~ Mz2 [(2M 2 -!-M 2) (C 1) 
167r2 4Mw2(Mz2-Mw2) w z uv-

-4Mw2Ft(m!, Mw, 0) -2Mz2Ft(O ,Mz, 0)], (E·12) 

~1-~ Mz2 [C2M 2 M 2) (c _ _l) 
- 167r2 4Mw2(Mz2-Mw2) w + z uv 2 

-2Mw2lnMw2-Mz2ln Mi], (E·13) 

+4ml{2Go(m!, A, m!2) -G1 (m!, A, m!2)}] 

Mz2 [Cuv-1-2Ft(O,Mw,m/) 
2(Mi-Mw2) 
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(E-15) 

8(Mz2 -Mw2) 2 +Mz2 (4Mw2 -3Mz2) 

8Mw2 (Mz2 -Mw2) 

G1 (mz, Mz, m/)}] , 
(E·16) 

E. 4 Lepton mass shifts 

The lepton mass-renormalization constant (Jm1 is given by 

2 

(Jmz=_e ____ - -~~ ___ 'ffl_:_ ___ ~--[- (11Mz4 -14Mz2Mw2)Cuv 
167!2 8Mw2 (Mz2 -Mw2) 

+3Mz4 -6Mz2Mw2 + 16Mw2 (Mz2 -Mw2) {2Fo(mz, 0, ml) 

+ 16(Mz2 -Mw2) (Mz2 -2Mw2)Fo(mz, Mz, m/) 

-2(5Mz4 -12Mz2Mw2 +8Mw4)F!(mz, Mz, m/)]. 

E. 5 Vertex renormalization constant Y 

(E-18) 

To calculate the constant Y, we first evaluate the eeA vertex function 
at q2 = 0 (see Fig. 5. 8 in § 5. 3) and then add the counter term found m 
§ 4. 3 with Z!/1., Z¥1. ZL' and ZR' as given in E. 1 and E. 3. We find 
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Appendix F 

Spence Function 

Feynman parameter integrals appearing in one-loop amplitudes can be 

performed analytically leaving one special function unintegrated ['t Hooft and 

Veltman 79]. The special function is called the dilogarithm or the Spence 

function [Lewin 58]. In this appendix we list some useful properties of the 

Spence function. The Spence function is defined by Eq. (5 · 40), i.e., 

Sp(z) = _ f'dtln(1-t) . 
Jo t 

(F ·1) 

It is an analytic function of complex z with a branch cut from z = 1 to oo. 

To see this property more clearly, we reexpress Eq. (F ·1) by making integ­

ration by parts with a suitable change of the integration variable: 

Sp(z) = fldt ln t . 
Jo t-1/z 

(F·2) 

Obviously in Eq. (F · 2) we observe that the branch cut lies in the interval 

0<1/z<l. 
There are some useful relations among the Spence functions with different 

arguments: 

7C2 
Sp(z) +Sp(l-z) =--ln z ln(l-z), 

6 

Sp(x) +Sp(--x-) = _ __!_(ln(1-x)) 2 , x<l. 
1-x 2 

The series expansion of Sp (z) in powers of z reads 

= zn 
Sp(z) = ~-, lzJ<1. 

n=l n2 

(F·3) 

(F·4) 

(F·5) 

(F·6) 

At some special values of z, Sp (z) can be expressed m terms of the known 

constants: 

Sp(1) =n2/6, (F·7) 

Sp ( -1) = -n2/12, (F·8) 

Sp(l/2) =7r2/12- (1/2) (ln 2) 2 • (F·9) 
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Appendix G 

Formulas for the Generating Functional and the Effective Action 

We derive formulas for the generating functional W[ J, K] defined in 
Eq. (2·95) and the effective action T[¢, K] defined in Eq. (2·99). We deal 
with both commuting and anti-commuting field variables simultaneously and 

give a compact proof of formulas [Aoki 79]. 
We start by recalling the definition of the generating functional W[ J, K], 

exp iW [J, K] =(0/T exp iS[J, K] /0), 

S[J, K]= S d 4x[Jt(x)tit(x) +Kt(x)~BRstit(x)], 

(G·l) 

(G·2) 

where tit (x) represent field operators and Jt (x) are corresponding e-n umber 
sources with the same commutativity as that of tit (x). The BRS sources Kt 
are also introduced and its commutativity is the same as that of corresponding 
~BRStii (x) • 

First of all we introduce the connected part of a Green function. The 

connected part is defined graphically with the aid of the corresponding Feyn­
man diagram. The vacuum expectation values of operators should be subtract­
ed in the connected part. We give some examples. It is convenient to intro­

duce 0 defined by 

With the aid of these operators Ot, we have 

(O/TOJ02/0)c= (O/T0102/0)- (0 /01/0)(0 /02/0) 

=(0/TOJ02/0), 

(OJTOI020a/O)c=(0/TOJ020a/O), 

(0 I T01020a04/ o)c = (0 I TOJ020a04/ O) 

- (0 / TOJ02JO)(O /TOa04/ 0) 

- (0 I TOJOa/ 0)(0 I T0204/ O) 

-(OJT0104/0)(0JT020a/O), 

where we have assumed that Ot are commuting operators. 

(G·3) 

(G · 4a) 

(G·4b) 

(G·4c) 

Consider the term with sn in the expansion of the right-hand side of 

Eq. (G·l), (OJ (1/n!)T(iS)n/0). This n-point amplitude is a sum of various 

products of connected amplitudes: 

(G·5) 
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We characterize a product of connected amplitudes by a set {nk} where nk is 
the number of k-point amplitudes in the product of connected amplitudes. 
The factor P( {nk}) in Eq. (G·5) is the number of combinations to separate 
n points into parts where the number of k points is nk set. This factor is 
evaluated as 

(G·6) 

Substituting Eqs. (G·6) and (G·5) into Eq. (G·1), we have 

=exp(OIT exp iSIO/. (G·7) 

Thus the functional iW is the connected part of the Green function, 

iW=(OIT exp iSIO)c. (G·S) 

Before proceeding to the formulas for differentiation of W, it is necessary 
to fix a convention for the differentiation with respect to anticommuting vari­
ables. We adopt the so-called left-differentiation. In this convention the dis­
tribution formula is 

(G·9) 

where ( -1): is + 1 ( -1) when A is commutative (anticommutative) with c/J. 
The formulas for differentiation of W with respect to sources are 

1 6"W 
i"-1 6S16S2· ··6S,. 

where we have used the following simplified notations: 

S[J, k]=Jt.¢Jt+Kt·6BRs¢t=St•Ot, 

St= {J, K}' Ot= {¢' 6BRS¢}. 

(G·10) 

(G ·lla) 

(G·llb) 

It should be mentioned that the order of differentiation and that of operators 
are correlated with each other. Setting all sources to be zero, we have 
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Now let us proceed to the effective action defined by 

T[ifJ, K]=W[J, K] -Jr¢J,, 

(} 
ifJ,=-W [J, K] . 

(}J, 

(G-12) 

(G-13) 

(G-14) 

In Eq. (G-13) Ji is understood to be a functional of ¢J (and K). In fact 

Ji is expressed as 

(G-15) 

where ei is a sign factor defined by 

ei = -1 ( + 1) for commuting ¢£ (anticommuting ¢,). (G-16) 

We start with the following identity: 

(G-17) 

By using the definition ( G ·14) and the formula (G ·10), we have 

(G -18) 

This Js expressed graphically as 

(G-19) 

Thus the operator tJjtJ¢k amputates the "leg" <OIT<ii exp iSIO)c. 
We rewrite Eq. (G -18) as 

tJ,k = tJJ' tJ2W = s' tJ2r _izw 
tJ¢k (}J ,tJJ, tJ¢ktJ¢, (JJ ,tJJi 

i&2T ~ ~ 
= e1 (OIT¢ ,¢£ exp iSIO)c. 

tJ¢ktJ¢, 
(G-20) 

By setting all field (source) variables to their vacuum expectation values 

(zero) : ¢i = <Oii£10), Ki = .h = 0 (this setting is represented by the symbol 

lo), we have 

(G-21) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article-abstract/doi/10.1143/PTPS.73.1/1848359 by guest on 06 January 2019



Appendix G 217 

where use has been made of 

(G·22) 

This relation is obtained on the assumption that any anticommuting field 
has vanishing vacuum expectation value. Equations (G·20) and (G·21) 
indicate that the second derivative of r is the inverse propagator. 

We make further differentiation of Eq. (G · 20) with respect to r/11 and 
we have 

(G·23) 

The factor e1k1 is the sign factor depending on the commutativity of r/11 with 
rpkrpj, 

{ +1 
-1 

for ¢1 commutative with the product rPkrP 1 , 

for rPt anticommutative with the product rPkrPJ . 
(G·24) 

In Eq. (G·23) we have used the fact that Wand r are commutative quanti­
ties. We have another useful relation, 

Q'2W Q'2r s'- 0' 
O'JkO'JJ O'¢JO'¢, - lk' 

(G·25) 

which 1s obtained from the identity 

(G·26) 

By the use of Eq. (G · 25), we rewrite Eq. (G · 23) as 

i0'3r i0'2F ( o- 0'2W ) i0'2F 
O'¢t0'¢k0'¢m = - etkj ej O'¢k0'¢ J O'rfit iO'J JO'J, 0'¢,0'¢m . 

(G ·27) 

The right-hand side of Eq. (G · 27) is understood to be the amputated three­
point vertex with the aid of graphic considerations as follows: 

(G·28a) 

(G·28b) 

(G ·28c) 
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Thus we have 

The further differentiation (] j(]cp,. of Eq. (G · 29) gives, 

k 

i(]4T = -em R. 0 m 
(] cp,.(] rPt(] cpk(] rPm 

n 

Generally we have 

i(]"T 
(] ¢h(] ¢2 ... (] ¢,. 

-e" 
, ' : _,),n . \ 

. ' 1 
• 2 

(G-29) 

(G·30) 

(G·31) 

The n-th derivative of r is the one-particle irreducible n-point functions. 
Setting all the sources equal to zero and treating the sign factors including 
e" carefully, we obtain the final result: 

N>3 -' (G·32) 

where we have used Eq. (G·22). It should be noted that Eq. (G·32) with N=2 
is not equal to Eq. (G-21). 

The differentiation of T with respect to sources K is easily transformed 
into that of W: 

(]T I -(]WI (]J I rP 
(]Ki ¢fixed (]Ki ¢fixed (]Ki ¢fixed 

= ~~~Jfixed 
=<OIT (JBRs(j}t exp iSjO). (G·33) 

The further differentiation is evaluated as follows: 

(G ·34) 
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(G ·35) 

It should be mentioned that Eqs. (G · 34) and (G · 35) do not hold for 
the linear part of fields in (JBRs¢;. For example, we take 

(G·36) 

In this case the differentiation of r with respect to Ki is 

= IJW + ... 
IJJ, 

=¢,+"·. (G·37) 

For the first term on the right-hand side, further differentiation gives trivial 
results, 

(G·38) 
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